
Portable Trace Compression through
Instruction Interpretation
Svilen Kanev

Harvard University
skanev@eecs.harvard.edu

Robert Cohn
Intel Corp.

robert.s.cohn@intel.com

Abstract—Execution traces are a useful tool in studying
processor and program behavior. However, the amount of
information that needs to be stored makes them impractical
in uncompressed form. This is especially true for full-state
traces that can capture up to kilobytes of processor state
for every instruction. In this paper we present Zcompr
– a compression scheme that allows practical usage of
full-state traces that are billions of instructions long. It
allows complete state reproducibility, sufficient even for
validation purposes, that is fully portable between different
operating systems and host platforms. The compression
scheme exploits the general similarity between compression
and prediction. A simplified functional simulator is used
to predict instruction effects in a repeatable manner. Its
predictions can be used to reproduce those effects at
decompression time, limiting the amount of information
that needs to be stored per instruction. Final trace densities
achieved by our scheme are on the order of two bits per
instruction, with typical decompression speeds of 300 KIPS.

I. INTRODUCTION

Full-state traces contain the entire architectural state
of a computer system after each execution of an instruc-
tion. Architectural state includes all general purpose and
floating point registers, control registers, model-specific
registers, and memory. A full-state trace is useful for a
variety of tasks in computer system design. Performance
models use traces to drive simulation. An instruction
cache model can use the sequence of instruction pointers
to predict an instruction cache hit rate, while a cycle
accurate model needs the full register and memory infor-
mation contained in a full-state trace. A microprocessor
design can be validated by comparing the full-state trace
of a reference model against the observed behavior of
a system under test. Differences in architectural state
between the two are likely to be defects. While dedicated
formats currently exist for these trace uses, being able to
derive the data for a specialized format from a full-state
image is certainly beneficial.

Full-state traces decouple the collection of behavior
and analysis. Collecting the behavior may require special
hardware such as a logic analyzer. Generating the be-
havior may need access to a specific hardware/software
combination that cannot easily be replicated, such as in a
transaction processing workload that requires thousands

of disks. Generating the behavior may be very expensive,
for example an RTL simulator that can only simulate a
few instructions per second. By decoupling collection
and analysis, we eliminate dependence on reproducing
the environment that generated it.

Full-state traces are efficient to analyze because they
can be broken into independent chunks. A trillion in-
struction trace can be divided into slices of a billion
instructions each and distributed to a thousand computers
to be analyzed in parallel. Traces make fast-forwarding
easy, allowing analysis to instantly skip any part of the
execution. However, a direct encoding of a full-state
trace is impractical because it must include the state
of all registers and memory after each instruction. Even
disregarding memory, a current-generation IA32 archi-
tecture [1] would require storing kilobytes of register
state per instruction.

Simulators are an alternative for compactly represent-
ing the full execution state by relying on simulated
execution to reproduce register and memory values.
However, they can only faithfully reproduce behavior of
microprocessors they were designed to implement; they
continually need to be updated to implement new model-
specific features like new instructions.

In this paper, we describe a technique for compressing
full-state traces. It provides the storage efficiency and
encapsulation of simulators, can exactly reproduce any
model-specific behavior, and allows rapid decompres-
sion. We show that a typical full-state trace consumes
2 bits per executed instruction and can be decompressed
at a rate of 300k instructions per second.

Like a simulator, we use an initial state and micro-
processor simulation to reproduce a sequence of states,
rather than storing the results. Unlike simulation, we do
not assume that our model can exactly reproduce the
behavior. We instead use the simulation as a prediction
of the behavior and only need to record differences be-
tween actual and predicted behavior. A predictor doesn’t
need to be perfect, allowing us to use a much simpler
simulator that only accurately models the frequently ex-
ecuted instructions. Misprediction reduces compression,
but does not affect correctness. Complex and model-
specific behavior like exceptions can be completely
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(a) A full-state trace decouples running reference
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(b) The same full-state trace compressed/decompressed using interpreter-
based prediction.

Figure 1. Sample co-simulation workflow that validates a test CPU model against a reference CPU.

omitted since it does not occur frequently.
During decompression, we use the simulation and the

recorded differences to exactly reproduce the original be-
havior. A simpler simulator enables fast decompression
because it can eliminate checks in the critical path for
events that rarely occur.

This paper starts by presenting simulator co-
simulation as an environment that requires compact
full-state traces (Section II). It goes on to describe
interpretation-based compression as an approach that
allows such compaction (Section III), its limits (Sec-
tion IV) as well as details about our implementation
of such a system (Section V). This is followed by
effectiveness evaluation (Section VI) and specific opti-
mizations to our baseline implementation (Section VII).
The paper concludes after discussing alternative systems
(Section VIII).

II. MOTIVATION

In this section, we introduce a specific use-case for
full-state traces: validation of simulators through co-
simulation. After providing background, we describe the
requirements for a portable, efficient full-state tracing
system.

A. Full-state Traces for Co-simulation

A functional model for a microprocessor simulates
the execution of instructions but not necessarily the
exact timing. It is used throughout the microprocessor
design cycle. Early in the design, functional models are
used to drive timing models for performance projections.
Software needs to be developed for the microprocessor
before the hardware becomes available, so functional
models are incorporated into a virtual platform that can
execute the full software stack including an operating
system.

Requirements for functional models vary by use. For
example, a RTL model is developed as an intermediate
step before physical implementation and can also serve
as functional model. An RTL model executes very slowly
(10 IPS) and is labor-intensive to create because it
models the exact hardware. At the other end of the
spectrum, virtual platforms for software development
systems must be very fast (100 MIPS) and do not need to
model hardware features that are not visible to software.
Performance modeling lies between the two in terms of
performance requirements and level of detail.

The existence of multiple models makes it possible
and desirable to use co-simulation to test one model for
correctness by comparing its behavior against another.
In its simplest form, we single step two models and
compare the entire state of each system after executing
an instruction. Any differences are likely to be a defect
in one of the models. After a difference is detected, the
two models can be synchronized to the same state and
continue execution. Resynchronization makes it possible
to continue execution past benign differences caused by
undefined behavior as well as bugs that are to be fixed
later. This is especially beneficial in initial development
stages where bugs are numerous and not ordered by ease
of fixing.

A straightforward approach to co-simulation is to
simultaneously execute the two models. However, an
online comparison is not always practical. If an RTL
model can only execute a few instructions per second,
recording a full-state trace of an execution and consum-
ing it multiple times is more efficient than repeatedly
running the RTL simulation. Online comparison of a
workload running in a virtual platform can be unwieldy
because the virtual platform workload may not be easily
automated (mouse clicks or keys pressed), may require



# Initial State
REG RAX 0x7f
REG RIP 0x80400000
SYNC
# add rax, qword ptr [rcx]
MEM_READ 0xc0000000 0x1
REG RAX 0x80
REG RIP 0x80400004
STEP
# sub rax, qword ptr [rcx]
REG RAX 0x7f
REG RIP 0x80400008
STEP

Figure 2. Sample difference log entry for the effects of an add and
a sub instruction. Note that a STEP command is used to explicitly
define instruction boundaries.

10’s of gigabytes of virtual disk, or may be dependent
on a specific host operating system or processor features.

Collecting a full-state trace of a workload running
in a virtual platform solves these issues by removing
all dependence on the environment that generated it.
Figure 1a visualizes this decoupling.

B. Full-state Trace Compression Requirements

The characteristics of co-simulation testing define
some requirements for full-state trace compression. The
reference behavior can come from multiple sources such
as RTL models or high speed instruction set simulators,
so we don’t want to be tied to a specific system. The
speed of decompression must be high enough so it
does not limit the amount of testing done in a fixed
time. Compression speed is less important because we
typically collect a reference trace once and consume it
multiple times in a regression test. Traces are distributed
over the network and transfer time can be a bottleneck
for a large trace.

III. INTERPRETATION-BASED COMPRESSION

In this section, we introduce interpretation-based com-
pression. It is a compression scheme designed with co-
simulation in mind. A co-simulation workflow with com-
pressed traces is shown in Figure 1b. The compression
process takes three steps. A collector single steps a
reference system, recording a difference log of the effects
of executing each instruction. Next, an interpretation-
based predictor compresses the difference log. Finally,
a general-purpose compressor compresses the output
of the interpretation-based compressor. After a similar
decompression sequence, the trace can be used as a
substitute for the reference system execution.

Step 1: Collection

Instead of recording full state after every instruction,
the trace only contains changes to the state caused by
the reference CPU executing an instruction, which we
call difference logs. Difference logs are collected by
observing the execution of the reference CPU. The trace
collector maintains a shadow state containing registers
and memory. The shadow state is initially set to all
zeros. Before starting execution, the collector copies
the reference CPU register values to the shadow state,
recording the values that are non-zero as shown in
Figure 2. Next, the collector emits a SYNC command,
indicating that the shadow state and reference CPU
registers are synchronized and execution can begin.

The collector single steps the reference CPU, observ-
ing memory reads and writes. Memory read and write
values are copied to the shadow state and recorded in the
difference log if they differ from the previous value for
the respective location. After the reference CPU com-
pletes execution of an instruction, the collector copies
the shadow state registers to the reference CPU registers,
recording any values that change. A STEP command
indicates an instruction boundary. In the example in
Figure 2, the ADD instruction reads 0x1 from memory
location 0xc0000000. The initial shadow state of this
memory location is 0 so the new value is recorded.
Register RAX and the instruction pointer change values;
the collector records the new values in the log.

With this scheme memory reads are not recorded
if the shadow state already contains the correct value,
which occurs when value is the result of a previous
write. This is a similar approach to [2] and [3] – rather
than keeping a full memory image, only values that are
actually used by the workload and are not the result of
earlier computation are recorded.

With this approach the collector is intentionally sim-
ple; it has no understanding of the semantics of execu-
tion, only recording values that change. Most instructions
change the instruction pointer and a general purpose
register, requiring at least 2 registers to be recorded.
A straightforward binary encoding of a difference log
averages 20.5 bytes per instruction.

Step 2: Interpretation-based Prediction

Prediction and compression are closely related. If a
byte stream can be correctly predicted, then a compressor
can note that the prediction is correct and omit the data.
At decompression time, the predictor regenerates the
data. Data that cannot be predicted is included in the
compressed file.

This similarity has been exploited for branch predic-
tion and prefetching [4], [5], [6]. Burtscher et al. [7] use
value prediction as a way to compress simple trace for-
mats. Our scheme, Zcompr, also uses this approach, but



# Initial State
REG RAX 0x7f
REG RIP 0x80400000
SYNC
# add rax, qword ptr [rcx]
MEM_READ 0xc0000000 0x1
REG RAX 0x80
REG RIP 0x80400004
STEP
# sub rax, qword ptr [rcx]
FINE 1

Figure 3. Result after interpretation-based compression. Predicted
side effects are replaced with a FINE command.

applied to full-state logs and on instruction granularity.
We call such an operation instruction effects prediction.

The compressor starts with a full-state difference log
as an input. Its output is a difference log, extended
with commands for compression. A simple Predictor
model makes a heuristic guess about the register and
memory side effects of executing the next instruction.
The guess is checked against the register and memory
values from the input log. If the prediction is correct,
the compressor discards the side effects in the difference
log and emits a FINE command. Otherwise, the full
instruction effects are transferred directly to the com-
pressed log. As expected, long sequences of instructions
can be correctly predicted and the FINE command takes
a count of the number of correctly predicted instructions.
Figure 3 shows a log that has been compressed with a
FINE command.

When the decompressor reads a FINE command from
the compressed log, it executes the predictor model to
reproduce the effects of each instruction in the FINE
block. For other instructions, the effects are simply read
off the log.

In our framework, the predictor model can be any
instruction set simulator that meets the following require-
ments:

• supports single-stepping and inspection of regis-
ter/memory values

• reports memory values read/written by an instruc-
tion

• for a given input state, always produces the same
output state, even if the effect of executing an
instruction is undefined or model-specific

The last requirement ensures that the decompressor
exactly reproduces the input stream even if compressor
and decompressor are executed on different systems.

In this respect, any change in behavior in the CPU
model, even to correct incorrect execution, potentially
invalidates all previously collected traces because there

are no guarantees that decompression will reproduce
the original full-state trace. We have adapted existing
simulators to be predictor models. However we have
also implemented a CPU model specifically designed for
compression to avoid the need to change the predictor
and invalidate already collected traces.

By designing a predictor rather than an accurate simu-
lator, we can develop a customized model that better con-
trols reproducibility, portability, and complexity. If the
predictor returns inaccurate results for a given instruc-
tion, the compression ratio is reduced but compression
is still correct. For the IA32 architecture, much of the
complexity in developing a simulator is the combination
of segmentation, paging, interrupts, faults, tasking, and
a large CISC instruction set. Our model only needs to
implement basic segmentation and paging support and
totally omits interrupts, faults, and tasking. The predictor
only implements the instructions that are frequently
executed. It is difficult to make a simulator fast while
properly handling exceptions and self modifying code;
it is possible to get good performance without heroics
when the complex parts of the CPU can be ignored.

Step 3: General Purpose Compression

The output of the interpretation-based compressor is
dramatically smaller. However, there is still redundancy
in its output. The gzip compressor is effective in reducing
the output further and is the final step in compression.
We use gzip, rather than better-compressing algorithms
like bzip2, mostly because of faster compression and
decompression speeds. In this way, the speed overheads
of two-stage compression are less than 1% and we don’t
include them in subsequent timing data.

IV. LIMITATIONS ON COMPRESSION

In this section, we characterize some of the factors that
limit the compression in order to evaluate our design
decisions. Incorrect predictions limit compression and
can either be caused by external events or by inaccurate
modeling. We examine the two causes separately.

A. Unpredictable External Events

Events that originate outside the model are inherently
unpredictable and limit the effectiveness of compression.
We chose to only model the CPU in our predictor, so
external events like IO, interrupts, and initial memory
state cannot be predicted, even with a very precise CPU
model. Analysis of some workloads quantifies the effect
of that decision.

Figure 4 shows a breakdown of commands in
an uncompressed difference log. The IO READ and
MEM READ commands are caused by instructions that
read IO and memory and are the major source of external
events. The distribution in Figure 4 shows that, on



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Linux 1.3 Linux 2.6 SPEC

Fr
ac

ti
o

n
 o

f 
to

ta
l l

o
g 

si
ze

  
SYNC

CHECK_MEM

CHECK_IO

MEM_WRITE

IO_WRITE

MEM_READ

IO_READ

REG

STEP
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Figure 5. Cumulative histogram of runtime instructions over instruc-
tion forms.

average, 2.8% of the uncompressed log size consists
of unpredictable events. Therefore, compression ratios
of 30 − 40× are possible using our scheme. Interrupts
are not accounted for in this graph, but since interrupts
typically occur less than once every 10,000 instructions,
their contribution to log size is insignificant compared
to IO and memory.

B. Inaccurate Modeling

The compression ratios in the previous section opti-
mistically assume that the predictor functional model can
produce accurate results for all CPU events. Faults are
even less frequent than interrupts and not modeling them
does not change the compression ratio. The IA32 instruc-
tion set is large, complex, and evolves over time and it
is difficult to accurately model the entire instruction set.
According to our design principles, the ideal predictor
model should be fast and simple (not model-specific).
Additional workload analysis implies that designing a
simple CPU model that covers a significant fraction
of dynamic instructions is possible. Figure 5 shows
the cumulative distribution of dynamic instructions over
static instruction forms. By instruction form, we mean
the combination of instruction semantics, type, and size
of operands. For example, MOVSX eax, al, MOVSX
eax, ax and MOVSX [eax], al are all considered
different instruction forms. The very fast rise of the

cumulative distribution suggests that a functional model
that supports a small fraction of the instruction forms
defined in the ISA can cover the majority of dynamic
instructions. In detail, to achieve 99.9% coverage, the
model only needs to implement less than 10% of the
instruction set. The intuition behind these results is that
most code is not executed in a straight line sequence and
instructions are often repeated in loops. It is essential
for a general-purpose functional model to accurately
implement the entire ISA, but we can simply rely on the
collector to include the effects of infrequent instructions
in the difference log.

V. IMPLEMENTATION

This section describes relevant implementation details
for the above approach. First, we discuss the design of
the predictor CPU model created for Zcompr. Then, we
move on to its input – focusing on the approach we use
to identify and handle unpredictable events.

A. Predictor model

The predictor model used by Zcompr is in essence
a custom-built functional simulator. Internally, the pre-
dictor follows the classical model of an instruction
interpreter. First, in a fetch stage, memory requests are
generated and a byte queue is filled with the response.
Then, instructions are decoded from the byte queue.
For efficient and up-to-date IA32 decoding Zcompr uses
XED [8]. Finally, based on the instruction form, execu-
tion is forwarded to the appropriate emulation routine,
which updates architectural state based on the instruction
semantics.

As already stated, the predictor’s main aims are neither
completeness, nor 100% accuracy. It can be thought of
as an instruction effects cache – predicting the effects of
simple, general and frequent instructions, but omitting
complex and rare ones. Thus, there is a large room for
various optimizations that would not be applicable if
fidelity had to be guaranteed.

Incomplete instruction support is such an optimiza-
tion. In Section IV-B we showed that covering only 10%
of the static instruction forms can result in significant
coverage of the dynamic instructions executed. The
current version of our predictor core recognizes ∼80
instructions and ∼500 instruction forms (compared to
more than 2400 defined by the ISA). Instruction support
was added based on the frequency in the examined
workloads.

In a similar manner, the predictor does not support the
complete IA32 architectural state. Modeling infrequently
used registers (such as debug or model-specific ones) or
even execution modes (such as Virtual-8086 mode) is
intentionally omitted. As a general design principle, we
optimized for the common case, modelling inaccurately



# mov rax, qword ptr [0xff]
MEM_READ 0xff 1
# REG RAX 1
# STEP
# add rax, 2
# REG RAX 3
# STEP
FINE 2

(a) An instruction sequence that can be compressed despite
the unpredictable memory read in its beginning.

# mov rax, qword ptr [0xff]
MEM_READ 0xff 1
# REG RAX 1
# STEP
FINE 1
# mov rax, qword ptr [0xff]
MEM_READ 0xff 2
# REG RAX 2
# STEP
FINE 1

(b) Splitting unpredictable memory reads from the same
address with a FINE command.

Figure 6. Handling of unpredictable events. Commands preceded by # are removed from the uncompressed log.

or even omitting infrequent or exceptional behavior. This
allows simpler and more compact code, as well as speed
improvements because checks for infrequent behavior
are not conducted.

On the other hand, other widely used optimizations
cannot be safely used for our predictor. For example,
Xen [9], VMWare [10], and KVM [11] achieve high
performance by assuming that a guest instruction can
be simulated by executing the same instruction on host
hardware. This creates the possibility that the predictor
may behave differently if compressor and decompressor
are run on different hosts, leading to incorrect decom-
pression.

The differences in behavior come from model-specific
and undefined behavior. Every processor generation adds
new instructions. Thus, if the compressor host provides
the instruction, its effects are eliminated from the dif-
ference log. However, if the decompressor host does not
have the instruction, then it is not able to regenerate
the results. A more subtle problem occurs for undefined
behavior. For example, the overflow condition code is
undefined after executing a shift right instruction with a
shift value greater than 1. Undefined behavior like this is
typically deterministic, but can vary with each generation
or even stepping of a processor. When full-state traces
are used for validation, we must be able to exactly
reproduce the same state every time, independent of the
hosts used for compression and decompression. To avoid
dependence on model-specific or undefined behavior of
host instructions, the Zcompr model implements the
semantics of instructions in C, not assembly code.

B. Unpredictable Events

Unpredictable events, as discussed in Section IV-A,
consist of any effects external to the core. In our log
format they are mostly IO and initial memory reads.
They cannot be predicted by Zcompr, which does not
model IO.

In the initial uncompressed log format, read events
are treated in the same way as other instruction effects
and recorded along with the rest of the effects of an
instruction. If the memory reads in the difference log did
not match previously read or written values, they cannot
be predicted; they must always copied to the compressed
trace. For example, in Figure 6a, the rest of the side
effects of the first instruction can be predicted if we first
set the memory location to 1 and then execute the MOV
with the predictor. In order to compress, we delete the
REG RAX 1;STEP sequence and replace it with a FINE
command since there is no need to correct any other
register or memory state in the predictor. Instructions
that follow and are correctly predicted can be combined
with a FINE 2.

Note that consecutive MEM READ or IO READ com-
mands (usually originating from IO devices or other
processor cores) must always be separated with a FINE
or STEP to ensure that each instruction sees the correct
value (Figure 6b).

VI. RESULTS

We evaluate Zcompr with a collection of work-
loads, noting the achieved log sizes and compres-
sion/decompression speeds. All sizes are taken as re-
ported by the operating system and execution times
include user and system time, as measured by the Unix
time command, thus ignoring disk IO. The workloads
include two operating system boots – embedded Linux
distributions based on version 1.3 and 2.6 kernels – and
the SPEC CPU2006 suite [12] with test inputs. The
initial uncompressed logs were captured with different
functional simulators. This mix covers a variety of
workloads: the OS boots use memory and IO extensively,
while SPEC is CPU-bound and covers both integer and
floating point code. The two OS boots are comprised
of 32-bit and 16-bit code, while the SPEC runs were
gathered with a simulator in 64-bit mode. Therefore, we
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Benchmark
Length

(106 Inst)
Compression
speed (KIPS)

Decompression
speed (KIPS)

Compression
ratio

Linux 1.3 boot 107 113 315 265×
Linux 2.6 boot 1420 96 344 48×

SPEC 2006 1750 67 294 171×
Table I

SPEED AND ABSOLUTE COMPRESSION RATIO WHEN USING ZCOMPR.

expect that Zcompr achieves similar results for a large
range of workloads.

Figure 7 shows log densities achieved by Zcompr (raw
data are presented in Table I). The first set of 3 bars rep-
resents single-stage compression, while in the second set
of 3 an additional compression stage with gzip is applied.
Oracle results are obtained with a complete functional
IA32 model, rather than our specialized predictor CPU
model. Although such a solution is not suitable for
compression mainly because of lack of portability, on a
specific platform it can achieve near-perfect compression
and we include it here for comparison.

There are three important points to note in Figure 7.
First, after gzip the average compressed log density is 2.2
bits per instruction, which is close to our compression
design goal. The Linux 2.6 workload is a clear outlier.
We note that in Figure 4 unpredictable instruction effects
comprise 5% of the uncompressed log size for its execu-
tion, compared to < 1% for the other workloads. Second,
two-stage compression is definitely a useful optimization
– for a 1% speed overhead it achieves almost an order
of magnitude lower log densities. Finally, there is very
little difference between log densities achieved by the
oracle CPU model and our specialized predictor model.
This further verifies the claim from Section IV-B that a
simple model suffices for covering a significant fraction
of predictable instruction effects.

In order to understand the factors limiting obtainable
compression, we look into the size distribution of log
commands in the compressed logs before gzip is applied.
The results are shown in Figure 8. As in Section IV-A,
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Figure 8. Distribution of trace commands in logs compressed using
our scheme. Unpredictable commands take up 75% of final size.

SYNC represents the synchronization blocks in each
log file and is comprised mostly of memory reads.
Note that the FINE command introduced to manage
decompression comprises a non-ignorable fraction of the
log size – a 8.7% overhead. In contrast to Figure 4,
after compression predictable events are a minority –
25% of the overall compressed size. This again confirms
that a simple functional model can predict a significant
fraction of the log commands. While there is still room
for improvement in terms of better prediction, Amdahl’s
law limits the potential benefit.

VII. OPTIMIZATIONS

In order to achieve the results presented above,
Zcompr implements specific optimizations to the ap-
proach and implementation described in the previous
sections. In this section we describe two categories
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Figure 9. Effectiveness of strategies to deal with undefined flags.
Results are normalized to the case with both optimizations on.

of such optimizations. The first category targets better
compression by limiting the unpredictable effects of
undefined flags and varying the log chunk size. The
second combines a number of optimizations aimed at
increasing decompression speeds.

A. Compression

Flags handling. Undefined condition flags are a
major source of unpredictability. The IA32 architec-
ture [1] does not specify the effects of all instructions
on the flags register and different implementations vary.
This affects even most common instructions classes
– logic instructions, shifts and some arithmetic. Our
analysis shows that, in some workloads, instructions that
generate undefined flags can comprise up to 10% of
the instruction stream. This can be a limiting factor in
the compression achievable by Zcompr, since it insists
on reproducing undefined flags behavior for validation
purposes.

To address this issue, we use a two-step approach.
First, our predictor model uses a simple set of heuristics
to predict the results of an instruction with undefined
flags. Undefined flags are usually either left unchanged,
set, or cleared. Then, if the heuristics are not correct
for the behavior in the trace, we mark the instruction as
partially predicted and only emit changes to the EFLAGS
register, but not the other results of the instruction.

The effectiveness of both approaches is shown in
Figure 9. Flags only refers to the case when only the first
optimization is on, while Partial only has only the second
one. All results are normalized to the case with both
optimizations on (which is also the one shown in Sec-
tion VI). In the case of single-stage compression, each
combination of optimizations can provide significant size
reductions, reaching almost a 2× improvement for Linux
1.3. However, the second stage bridges a large portion
of the gap between the unoptimized and most optimized
case and the maximal effect of both optimizations acting
together is only slightly over 25%. Note that for Partial
only and Linux 1.3, the result after applying two-stage
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compression is even better than with both optimizations.
Similar effects of two-stage compression are observed
and exploited in [7], but do not appear to be prevalent
in Zcompr.

An alternative approach to dealing with undefined
behavior can be based on learning from the original
trace. The predictor can note which of the heuristics are
correct for a particular trace and base future flag handling
on these heuristics. We leave this to future work.

Log chunk size. Splitting the trace for a full workload
into smaller-sized chunks can be useful – the chunks
can be analyzed in parallel, or used as checkpoints for
skipping irrelevant initialization code. However, each
chunk must contain initial values for the memory and
IO addresses it references. Values that are not changed
and read multiple times will appear in multiple chunks,
increasing the total size.

To isolate this effect, we evaluated the resulting log
density for different chunk sizes. Results from this sweep
are shown in Figure 10. The workload examined is our
Linux 2.6-based distribution1. The knee of the curve is
close to a 7 million instruction chunk size. For smaller
sizes, the replication effects can easily dominate the total
log size. The trends for gzip only and Zcompr+gzip are
identical because Zcompr essentially does not compress
such unpredictable data. Based on these results, we
always used chunk sizes above 10 million instructions
when evaluating achievable compression.

B. Decompression Speed

Persistent decode cache. Mihocka and Shwarts-
man [13] show that decoding is a major bottleneck
in interpreter-based x86 simulators. In order to max-
imize decompression speeds, we completely eliminate
decoding when the predictor CPU is operating in de-
compression mode. Instead, during decompression the
simulator operates off a decode cache. It is created

1This particular experiment has been conducted with a different
version of Zcompr, so absolute values may be different than those
presented in Section VI.
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Figure 11. The effect of dedicated optimizations targeting decompres-
sion speed. The last three sets of bars represent incrementally enabling
the three optimizations described.

by the same simulator during compression and stores
information about instruction semantics and operands
that is sufficient to execute each compressed instruction.
This information is in a less compact, but easier to
parse form than regular IA32 encoding. Thus, decode
time is significantly reduced at the cost of the space
needed to persist the decode cache between compression
and decompression. The cache itself is implemented as
a hash table, indexed by the physical address of the
program counter and is split in chunks in the same
way as the input log files. This is done to ensure that
collisions inside a single chunk (different instructions on
the same physical address due to, for example, dynamic
loading of a program by the OS) are extremely rare. In
case such collisions do occur, they are detected during
compression and the instructions that generated them are
simply not compressed.

We found that persisting the decode cache adds an
overhead of less than 3% to the compressed log size. We
consider this negligible and do not add it to the results
in Section VI. On the other hand, as seen in the second
set of bars in Figure 11, being able to remove the decode
stage results in a total speedup of 53% over our baseline
implementation.

Software TLB. The next low hanging fruit in de-
compression speed was eliminating most virtual to phys-
ical address translations. Translation-lookaside buffers
(TLBs) are a well-established solution to this problem.
We added a 1024-element software TLB to our predictor
model to save address translations. When coupled with
the decode cache, this results in a 2× total decode speed
improvement over the baseline. Achieved decompression
speeds are approximately 300 KIPS (see Table I).

Block execution. After applying the above two
optimizations, profiling results indicate that the main
decompression speed bottleneck is not in the predictor
CPU model, but in its interaction with the decompression
harness. By default, the harness gets instruction effects
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Figure 12. Comparison between Zcompr and PinPlay on user-mode
SPEC workload. Y-axis shows compressed log size, normalized to the
size of the complete memory image, compressed with gzip.

for each decompressed instruction from the CPU model.
Such functionality is essential in a validation context
where errors should be easily identified with the instruc-
tion that produced them. However, communicating the
instruction effects is expensive both because of the large
amount of data and the fact that such transfers occur
with every instruction. Then, a simple way to mitigate
this overhead is to extract instruction effects more rarely
and effectively decompress the execution of blocks of
instructions together. We leave this as an option to the
user.

To evaluate the effectiveness of this scheme, we used
the largest possible block size – that of the respective
FINE block. The last set of bars in Figure 11 shows that
the potential for improvement is impressive – 6.7× the
baseline speed, resulting in a total average decompres-
sion rate of 1.1 MIPS.

VIII. RELATED WORK

A. Repeatable execution platforms

PinPlay [2] is a deterministic replay framework built
on top of the Pin dynamic instrumentation system [14].
It enables reproducing parallel program execution by
recording synchronization points and other unpredictable
behavior. However, since it is based on Pin, it is limited
to user-level code and relies on host execution for replay
capabilities. Zcompr’s design was inspired by PinPlay’s
approach and targets overcoming these limitations for
its use as a co-simulation platform. To compare both
schemes, Figure 12 shows their compression effective-
ness on the SPEC workload. The resulting PinPlay
logs are 30% smaller than their Zcompr analogs. This
is expected since Zcompr is able to reproduce the
original execution more closely – complete full-state
reproducibility, while possible, comes at a cost.

iDNA [15] is a record/replay mechanism developed
by Microsoft. It is similar to PinPlay – using a binary



translation framework and working on the user level.
However, it is an internal tool, so comparison results
are not included.

ReTrace [16] and ReVirt [17] are replay frameworks
that rely on system-level virtual machines. In this case,
virtual machines simulate the execution of a instruction
in the guest machine by executing the same instruction
on the host. This can limit their use to modeling behavior
of CPU’s that already exist. ReTrace specifically shares
most of Zcompr’s design goals. The authors report log
densities one order of magnitude lower than Zcompr’s.
However, the densities presented in [16] do not include
the input data (the virtual disk images), which are
required for re-execution. A minimal virtual disk for a
modern operating system is 2 gigabytes and can easily be
50 gigabytes or more. Our system can efficiently handle
traces as short as 10 million instructions, but when the
large fixed cost of a virtual disk is factored in ReTrace
needs traces of length 1 billion or more.

B. Trace compression

The VPC algorithm family [7] uses multiple simple
value predictors to recompute trace data based on ob-
served patterns. The different algorithm revisions vary
the number and type of predictors, as well as the
granularity they operate on. The main difference from
the proposed approach is that the only semantic fact
the VPC family makes use of is that every entry is
tagged by a PC value. Also, the algorithms require a
fixed, pre-determined format for each instruction entry,
which does not trivially map to full-state traces, where
each instruction can generate a variable number of
architectural effects.

C. Execution caching

FastSim [18] by Schnarr and Larus also uses
prediction-based techniques to short-circuit execution.
FastSim is a performance simulator which relies on fast-
forwarding. It caches actions (corresponding to pipeline
state) and their appropriate timing. In case of correct
prediction (cache hits), timing is readily available in this
cache. On a misprediction, a detailed pipeline model is
invoked.

IX. CONCLUSION

With trace-driven simulation being a major vehicle in
pre-silicon development and research, we addressed the
need for a trace format that contains full architectural
state. In order to make storing such logs reasonable, we
developed Zcompr – a compression framework that relies
on reinterpreting instructions in a stable and predictable
manner. Zcompr is able to compress billion-length traces

to several bits per instruction, while retaining validation-
quality reproducibility. It does so without any assump-
tions about the underlying operating system or host
architecture revision.
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