
Mallacc: a malloc hardware accelerator
Save 30-50% malloc latency with this one little* trick!

*little = 1500µm2, 0.006% of a Haswell core

Svilen Kanev, Sam (Likun) Xi, Gu-Yeon Wei, David Brooks
Harvard University

Deep vs broad hardware acceleration

2

We are used to deep accelerators
motivated by 90/10 rules

[Kanev et. al, ISCA 15]

What if there is no 90% hotspot?
instead largest hotspots at 1-7%
datacenter tax: interspersed, fast, frequent

Different design targets for “broad” accelerators
limited gains → limited overheads
latency over throughput

Bookkeep available memory
get pages from the operating system

give them out to application requests

What does an allocator do anyway?

3

Modern allocators (tcmalloc, jemalloc, Hoard, ...)
round requests in size classes
keep hierarchical pools of memory
keep closest pools thread-private

What does an allocator do anyway?

4

size 16

size 8

size 16

size 8

size 8

size 16

size 8

small large larger

size 16

size 8

private shared shared

Pool access costs vary by orders of magnitude

5

Most optimization effort spent at avoiding costly shared pools
fast paths are “fast enough”

[XIOSim simulation; tcmalloc;
Haswell CPU (<6% error)]

“Death by a thousand cuts”

6

Fast paths can consume the bulk of allocation time (60+%)
underlooked optimization opportunity

Fast-path malloc() in hardware

Typical calls take ~6-7ns (20 cycles)

7

To do better in hardware
integrate with the core
dedicated functional unit + new instructions
minimal overheads

Implementation details change frequently, don’t hardcode anything

8

Fast path deep dive

requested size → size class
(cheap hash + lookups)

sampling
(for profiling)

get free address for size class
(pop free list head)

update metadata
(still in software)

9

Fast path deep dive

requested size → size class
(cheap hash + lookups)

get free address for size class
(pop free list head)

Mallacc: a 2-part, tiny, in-core,
software-managed cache

Malloc cache:
memorize hot size classes

11

requested
size

size
class

256-270 6256

Lookup / replacement in software (2 new instructions)

no hardcoded allocator logic

270 6

Compares against size ranges

Malloc cache:
prefetch and store free list heads

A close copy of the current free list head node

12

requested
size

size
class

free list
head

256-270 6 6 0xdecaf0xdecaf, 0xbad

free list
head + next ptr

protected from cache antagonists between calls to malloc()
immediate result, if a hit

Explicitly updated by software (pop/push on malloc/free)
in parallel with the definitive copy in memory
prefetch head→ next for sustainable high hit ratios

30-50% reduction in malloc time

13

Only 16 entries are sufficient (size class locality)

1500 µm2 -> 0.006% of a Haswell core

Reasons for speedup:
shorter critical paths

14

On a malloc cache hit, the call can produce a result in 5-6 instructions

Reasons for speedup:
protection from cache antagonists

15

Allocator structures not evicted by the application

L2/L3 misses

To sum up

16

Memory allocation fast path is an overlooked
opportunity for speedup. Many calls, each
individually fast, aggregate to significant costs.

A small, dedicated, software-managed malloc
cache can speed up allocation by 30%, with
only 0.006% area overheads.

Broad acceleration in the era of datacenter tax
and dark silicon. Limited gains per accelerator,
but also negligible overheads.

Backup

17

Some workloads have great size class locality

a 5-10-element cache should be enough
18

malloc cache example

19

Overall speedups

20

