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PROFILING A WAREHOUSE-SCALE
COMPUTER

.................................................................................................................................................................................................................

DATACENTERS ARE QUICKLY BECOMING THE PLATFORM OF CHOICE FOR MODERN

APPLICATIONS. TO UNDERSTAND HOW DATACENTER SOFTWARE UTILIZES THE HARDWARE

AND TO IMPROVE FUTURE SERVER PROCESSOR PERFORMANCE, THE AUTHORS PROFILED

MORE THAN 20,000 GOOGLE MACHINES OVER A THREE-YEAR PERIOD, AS THEY SERVED

THE REQUESTS OF BILLIONS OF USERS.

......The growth of cloud-based and
cloud-supported computing in the past dec-
ade has created new challenges for the com-
puter architectures that power large Internet
services. The hardware platforms behind the
cloud, referred to as warehouse-scale computers
(WSCs), emphasize system design for Inter-
net-scale services over thousands of comput-
ing nodes for performance and cost efficiency
at scale. At such a scale, understanding per-
formance characteristics becomes critical—
even small improvements in performance or
utilization can translate into immense cost
savings for datacenter operators.

Historically, WSCs were created to solve
computing problems significantly larger in
size than those fitting on a single server, and
their software stacks have evolved accord-
ingly. They typically consist of a large set of
distributed, multitiered services, each of
which exposes a relatively narrow set of APIs
and communicates to others exclusively
through remote procedure calls (RPCs).

Although such a software architecture is
easier to test, deploy, maintain, and iterate on,
the large number of services also produces per-
formance characteristics that are nontrivial to
isolate and measure. Benchmarking efforts,1,2

although extremely valuable for tuning indi-

vidual services, often fail to capture the large-
scale effects of their interaction, and therefore
paint an incomplete picture. To compensate
for this, we performed the first (to the best of
our knowledge) longitudinal profiling study
of a live production WSC. Our performance
measurements span tens of thousands of
machines, running thousands of different
applications, which in turn serve the requests
of billions of users over several years. We high-
light important patterns and insights for com-
puter architects, some significantly different
from common wisdom for optimizing SPEC-
like or open-source scale-out workloads.

We collected performance data from live
workloads using Google Wide Profiling.3 GWP
is based on the premise of low-overhead ran-
dom sampling of both machines within the
datacenter and execution time within a
machine. It has been unobtrusively sampling
the cycle distribution across Google’s server
fleet for nearly a decade, which makes it a per-
fect vehicle for large-scale longitudinal per-
formance studies, and lets us draw insights
from many core-years’ worth of measure-
ments. We also extended GWP’s infrastructure
to collect more specific processor performance
counters that go beyond attributing cycles to
code regions. This lets us analyze more subtle
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interactions of warehouse-scale applications
with the underlying hardware and ask micro-
architecture specific questions.

Overall, our performance profiles suggest
several interesting directions for future micro-
architectural exploration: design of more gen-
eral-purpose cores with additional threads to
address broad workload diversity, with specific
accelerators for “datacenter tax” components
and increased emphasis on the memory hier-
archy, including optimizations to trade off
bandwidth for latency, as well as more
advanced instruction-cache optimizations.

Workload Diversity and Datacenter Tax
The most apparent outcome of this study is
the diversity of workloads in a modern WSC.
Although WSCs were initially created with a
“killer application” in mind (be it Web
search, social networking, or e-commerce),
the model of “the datacenter is the com-
puter” has since grown, and current datacen-
ters handle a rapidly increasing pool of
applications.

To confirm this point, we performed a lon-
gitudinal study of applications running in
Google’s WSCs over more than three years.
We measured the distribution of CPU cycles
across applications and found that no single
application dominates execution time glob-
ally—the hottest one accounts for only
approximately 10 percent of cycles. This dis-
tribution quickly becomes tail-heavy—it takes
50 different applications to build up to 60
percent of cycles, and thousands for the
remaining 40 percent. Intra-application hot-
spots are not prevalent, either: profiles for sin-
gle applications are predominantly flat. For
example, a typical Web search binary covers
80 percent of cycles in more than 350
functions.

These findings are the result of an ongoing
diversification trend. We demonstrate this in
Figure 1, which plots the fraction of CPU
cycles spent in the 50 hottest binaries for each
week of the study. At the earliest periods we
examined, 50 applications were enough to
account for 80 percent of execution time, but
three years later, the same number (not neces-
sarily the same binaries) cover less than 60 per-
cent of cycles. On average, the coverage of the
top 50 binaries has been decreasing by 5 per-

centage points per year over a period of more
than three years.

From a software engineer’s perspective,
the absence of immediately apparent hot-
spots, both on the application and function
levels, implies that although there is value in
optimizing hotspots on a per-application
basis, the engineering costs associated with
optimizing flat profiles are not always justi-
fied. This has driven Google to increasingly
invest effort in automated, compiler-driven
feedback-directed optimization.4

Nevertheless, targeting the right common
building blocks across applications can have a
significantly larger impact in the datacenter.
Datacenter-wide profiling lets us identify
these interapplication building blocks. We
call the shared routines that comprise them
the datacenter tax, after the necessary cost of
performing computation that does not fit on
a single machine.

We identify six components of this tax and
estimate their contributions to all cycles in our
WSCs. Figure 2 shows the results of this char-
acterization over 11 months—“tax cycles”
consistently comprise 22 to 27 percent of all
observed execution. In a world of a growing
number of applications, optimizing such inter-
application common building blocks can lead
to significant performance gains, more so than
hunting for hotspots in individual binaries.

We included the following components in
the tax classification: protocol buffer manage-
ment, RPCs, hashing, compression, memory
allocation, and data movement. When select-
ing which interapplication building blocks to
classify as tax, we opted for generally mature
low-level routines that are also relatively small
and self-contained. The amount of code that
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Figure 1. Workloads are getting more diverse. The fraction of cycles spent in

the top 50 hottest binaries is steadily decreasing over the years.
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we categorize as tax is in the tens of thousands
of lines. On the contrary, if we were to
account for the same amount of cycles on a
per-application basis, we would need to cover
at least three orders of magnitude more code
lines. Thus, optimizing tax can have a very
high reward-per-engineering-effort ratio.

Microarchitectural Diversity
Diversity in WSCs does not manifest itself
only in the number of applications; we also
see multiple bottlenecks on the microarchi-
tectural level. To demonstrate the variety in
bottlenecks, we extended the GWP infra-
structure to collect performance-counter
expressions and identify specific microarchi-

tectural performance pain points. Each such
dedicated collection touches on approxi-
mately 20,000 randomly selected Intel Ivy
Bridge machines and samples execution on
each machine for 1 second. We used Top-
Down performance analysis to better under-
stand bottleneck root causes.5

A major conclusion from this analysis is
the prevalence of low retirement rates and,
consecutively, the low instructions per cycle
(IPC) that WSC workloads exhibit (see Fig-
ure 3)—almost two times lower than the
SPECint geomean and close to that of the
most memory-bound benchmarks in SPEC
CPU2006. Although no single microarchi-
tectural bottleneck is responsible for these
high stall times, we identify various optimiza-
tions in the cache hierarchy, both instruction
and data, that have the potential to reap sub-
stantial benefits.

Data Caches
On the data side, we found 50 to 60 percent
of all core cycles stalled on data—a result
consistent with the multi-gigabyte working
sets of these applications, which do not fit in
any level of the cache hierachy. Compared to
more traditional high-performance comput-
ing workloads, these data stall cycles were not
caused by bandwidth saturation. In fact,
memory bandwidth utilization was habitu-
ally low; we measured a 95th percentile uti-
lization of only 31 percent.

Similar results from benchmarking studies
have inspired research in adopting wimpier
cores in datacenters—if cores are mostly
stalled on memory, there is little need to
waste energy on wide out-of-order execution
resources. Our measurements, however, sug-
gest a more nuanced picture.

We show this in Figure 4 through the distri-
bution of extracted instruction-level parallelism
(ILP), or the number of simultaneously execut-
ing micro-ops at each cycle when some micro-
ops are issued from the out-of-order scheduler
to execution units. We see that 72 percent of
execution cycles exhibit low ILP (one or two
micro-ops per cycle on a six-wide Ivy Bridge
core), consistent with the fact that the majority
of cycles are spent waiting on caches. However,
for the other 28 percent of cycles, three or
more functional units are kept busy each cycle,
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Figure 2. Datacenter tax components account for 22 to 27 percent of

warehouse-scale computer (WSC) cycles. The fraction of tax cycles has

shown relatively little variation over the duration of our study.
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which suggests a very large performance hit
from moving to narrower cores.

One explanation consistent with such
behavior is that WSC applications exhibit a
fine-grained mix of dependent cache accesses
and bursty computation. The bursts of com-
putation can either be dependent on the
cache references or independent and extract-
able as ILP. The difference between these two
variants—whether intense computation-
bound phases are on the critical path of exe-
cution—could be detrimental for the end
performance of wimpier cores, and requires a
dedicated simulation study.

Instruction Caches
The Top-Down analysis of execution cycles
also suggests an unusually high fraction of
stalls due to instruction caches (the majority
of front-end bound slots in Figure 3). Many
such stalls are so severe that they completely
drain the deep buffers in a core’s front end,
causing full instruction starvation. We pin-
pointed this mainly to a large number of
high-penalty L2 instruction misses: at 5 to 20
misses per kilo instruction (MPKI), they were
10 times the highest seen in SPEC CPU2006,
and more than 1.5 times the highest observed
in other scale-out workloads.2

The main reason for such high miss rates is
simply the large code footprint of WSC appli-
cations. Binaries of hundreds of Mbytes are
common and often without significant hot-
spots. Thus, instruction caches have to deal
with large code working sets—lots of luke-
warm instructions. This is especially problem-
atic in the L2 cache, where instructions
compete for cache capacity with the data
stream, which typically also has a large working
set. As a result, instructions are often fetched
from the shared L3 cache, whose latency can-
not always be hidden by front-end buffers.

This instruction cache problem is also one
in the making. We demonstrate this by estimat-
ing the historical growth in instruction-cache
working set sizes of datacenter binaries over a
period of 30 months. (For details on the esti-
mation methodology, see our extended paper.6)

Actively developed binaries’ working sets
grow at alarming rates and outpace the
growth of instruction-cache capacity. For
example, Figure 5 shows one search applica-
tion whose instruction footprint grows at

more than 25 percent per year, eventually
reaching four to five times the largest one
seen in SPEC CPU2006 (400.perlbench).
Using the measured working set for 400.perl-
bench as a calibration reference suggests that
WSC footprints encroach 1 Mbyte. This is
significantly larger than midlevel caches in
current server processors (Intel: 256 Kbytes,
AMD: 512 Kbytes, IBM: 512 Kbytes),
which also have to be shared with typical
multi-gigabyte data working sets.

Long-Term Implications
From a long-term perspective, the slowdown
of general-purpose performance scaling will
undoubtedly cause a stronger emphasis on
performance monitoring and optimization at
all levels of the stack. In this article, we show-
case the GWP tool, which brings performance
monitoring to a warehouse scale, and demon-
strate the qualitatively new types of studies
and optimization opportunities that it enables.

GWP-collected microarchitectural profiles
suggest several directions to maintain the rate
of performance improvement for general-
purpose server CPUs. For example, the lack
of a single dominant microarchitectural bot-
tleneck, when combined with the large frac-
tion of memory-latency-bound cycles,
indicates that wider simultaneous multi-
threading can be efficient. Similarly, the high
incidence of instruction misses and the grow-
ing instruction-cache working sets encourage
more emphasis on reducing or protecting
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instruction-cache working sets—whether
through techniques like instruction pre-
fetching or instruction/data partitioning in
shared midlevel caches. Some of our find-
ings corroborate prior work on isolated
benchmarking.2 There is immense value in
validating benchmarks with real usage pat-
terns. Furthermore, benchmarking efforts
often underestimate the severity of bottle-
necks in production-grade codes (for exam-
ple, instruction-cache pressure and flat
execution profiles) and the engineering
effort required to eliminate them.

In the longer term, the confluence of tech-
nology trends points steadily toward hardware
specialization. Continued transistor-density
increases, coupled with the end of Dennard
scaling, result in the inability to power a whole
chip at maximum performance—the problem
known as dark silicon. This is old news in
mobile processors, in which the majority of sil-
icon area is dedicated to more efficient special-
ized blocks,7 but server chips are still
predominantly general purpose. Profiling
efforts like the one we presented are the neces-
sary first step in identifying the building blocks
that will make up future accelerator-rich
designs in the datacenter.

Our datacenter tax results suggest a qualita-
tively different approach to these future accel-
erator efforts. Datacenter hardware
specialization so far has mainly focused on
deep acceleration—identifying killer applica-
tions and optimizing their most costly ker-
nels.8 The diversification of workloads that we
observed, coupled with the ubiquity of the

datacenter tax suggest an alternative interap-
plication approach called broad acceleration,
which speeds up shared lower-level routines.
We expect significant academic and industrial
interest in this approach, especially fueled by
the growth of public clouds, which give orders
of magnitude more developers access to ware-
house-scale resources, and therefore breed
even more workload diversity than what we
have observed.

Such an approach is not without challenges
that further research will need to address. For
example, many of the routines in the datacen-
ter tax are already well-optimized in soft-
ware—a typical malloc() call takes only 20 to
30 CPU cycles on current-generation general-
purpose processors—and potential accelerators
must be tightly integrated with the surround-
ing code to improve on that. More broadly,
calls to tax routines tend to be frequent, fast,
and interspersed between other application
code. Thus, accelerating them would require
different techniques than those used in
throughput-based specialized blocks, such as
the ones used for image processing. It is up to
the community to find them in the quest of
ever more efficient computing at scale.

W SC workloads demonstrate signifi-
cant diversity, both in terms of the

applications themselves and within each indi-
vidual one. Our measurements of Google’s
server fleet show a common microarchitec-
tural signature for WSC applications—low
IPC, large instruction footprints, bimodal
ILP, and a preference for latency over band-
width—which should influence future pro-
cessors for the datacenter. Future designs
should carefully balance wide, out-of-order
cores with potentially wider simultaneous
multithreading; optimize the cache hierarchy
for decreasing and protecting instruction
working sets; and potentially shift system bal-
ance away from memory bandwidth and
toward latency.

Looking for longer-term performance
optimizations, we identified ubiquitous low-
level functions (the datacenter tax) that are
shared across thousands of applications.
Given the increasing popularity of specialized
hardware, tax components are ideal candi-
dates for specific accelerators in a future
server system on a chip. MICRO
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larger over time for a search binary under active development. They have
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