Tradeoffs between Power Management and Tail Latency in Warehouse-Scale Applications

Svilen Kanev, Gu-Yeon Wei, David Brooks Harvard University

Google

Kim Hazelwood Google Inc.

Warehouse-scale computers (WSC)

Datacenters built for a specific class of workloads

Heterogeneous, multi-tiered distributed services, tightly coupled

Overall service must provide latency guarantees often in the ~100ms

[Meisner et al. 2011]

WSC performance metric is most often tail latency

	50%ile latency	95%ile latency	99%ile latency
One random leaf finishes	lms	5ms	10ms
95% of all leaf requests finish	12ms	32ms	70ms
100% of all leaf requests finish	40ms	87ms	140ms

[Dean et al. 2012]

Many services require a response from all leaves

Which could be orders of magnitude slower than average responses

And very sensitive to variability

Power management leads to performance variability

A space between power savings and worse tail latency

Opportunities for power management

Energy proportionality

Energy proportionality: scale server power with load

Stable across platform generations

Energy proportionality

Energy proportionality: scale server power with load

Worst in mid-range utilization

Servers see the full range of utilization

[Content ads cluster in North America]

15-100% swings during a single day

idle (W)

full load (W)

Processors are still the major power consumers but cores also scale best with load

At low-utilization, non-proportional components (disks, flash, DRAM) matter more

Idle power management

Processor idle power management (C-states)

OS-exposed mechanism to exploit idle periods but still HW-controlled

Mostly responsible for current processors' proportionality

Various degrees of power gating increasing power savings increasing wakeup latency [1-200 µs]

Some WSC workloads sleep in short bursts

Some WSC workloads sleep in short bursts

Application sleep activity length can be comparable to wakeup latencies \rightarrow deep sleep can hurt service latency

Effects of sleep state selection

Deep sleep does save significant power (up to 15%)

But also hurts tail latency (up to 15%)

Active power management

WSC services are often stalled on memory

A good candidate for voltage and frequency scaling (DVFS)

Wishlist for server DVFS

Zero tolerance

latency degradation is evil

Workload independence

thousands of relevant workloads

Fine-grained requests handled in O(1ms)

Per-core

scalable services have independent threads handling independent requests

Importance of fine granularity

No power savings for control as fast as 100 µs

Execution phases are likely more fine-grained and would be best exploited in hardware

Importance of workload (in)dependence

Takeaways

Current server hardware is not universally energy proportional. Especially related to components like flash, DRAM, or disks.

Core sleep states (clock & power gating) are mostly responsible for power savings. But their effects on latency should be treated with care.

Active power savings are possible either on a very fine granularity, with additional hardware, or on ubiquitous individual workloads, exploiting latency slack.

Servers are often underutilized

Operating in power inefficient regions

[Barroso et al., 2013, several thousand machines over 3 months]

... but also require a lot of computation

[Reddi et al. 2010, Bing websearch]

Some services can be overdesigned

Specifically, to handle the peak utilization case

There is no benefit in beating service agreements (SLAs) at low utilization

Energy proportionality

Energy proportionality: scale server power with load

Relatively stable across platform generations