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Warehouse-scale computers (WSC)

Datacenters built for a specific U Web Server
class of workloads Front End
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Overall service must provide
latency guarantees [Meisner et al. 2011]
often in the ~100ms



WSC performance metric is most often
tail latency

50%ile latency 95%ile latency 99%ile latency

One random leaf finishes (@) 5ms 10ms
95% of all leaf 12ms 32ms 70ms

requests finish

I
100% of all leaf 40ms 87ms ( 140ms )

requests finish

[Dean et al. 2012]

Many services require a response from all leaves
Which could be orders of magnitude slower than average responses

And very sensitive to variability



Power management leads to
performance variabllity

Save power

y X
Turn off Slow down
4

A space between power savings and worse tail latency




Opportunities for power management
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Energy proportionality
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Energy proportionality: scale server power with load

Stable across platform generations



Energy proportionality
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Energy proportionality: scale server power with load

Worst in mid-range utilization



Servers see the full range of utilization
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[Content ads cluster in North America]

15-100% swings during a single day



Server components are differently
energy-proportional
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Processors are still the major power consumers
but cores also scale best with load

At low-utilization, non-proportional components (disks,
flash, DRAM) matter more



ldle power management
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Processor idle power management

(C-states)
fread()
OS-exposed mechanism to exploit Userspace
idle periods — - _'.t ________
but still HW-controlled mwalt e Kernel
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Core voltage

Core clock

Various degrees of power gating PLL
Increasing power savings L1 caches
Increasing wakeup latency (G itee

[1-200 ps]

Wakeup time

Power




Some WSC workloads sleep in short bursts
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Some WSC workloads sleep in short bursts

Distribution of time (%)
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Application sleep activity length can be comparable to
wakeup latencies - deep sleep can hurt service latency
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Effects of sleep state selection
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Deep sleep does save significant power (up to 15%)

But also hurts tail latency (up to 15%)
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Active power management
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WSC services are often stalled on memory
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A good candidate for voltage and frequency scaling (DVFS)
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Wishlist for server DVEFS

Zero tolerance
latency degradation is evil

Workload independence
thousands of relevant workloads

Fine-grained
requests handled in O(1ms)

Per-core
scalable services have independent threads handling
iIndependent requests
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Power (% of max)

Importance of fine granularity

No power savings for control as fast as 100 s

Execution phases are likely more fine-grained

and would be best exploited in hardware
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Importance of workload (in)dependence
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Takeaways

Current server hardware is not universally energy

proportional. Especially related to components like
flash, DRAM, or disks.

Core sleep states (clock & power gating) are mostly
responsible for power savings. But their effects on
latency should be treated with care.

Active power savings are possible either on a very fine
granularity, with additional hardware, or on ubiquitous
individual workloads, exploiting latency slack.



Servers are often underutilized

Fraction of Time at Average Utilization
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[Barroso et al., 2013, several thousand machines over 3 months]
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... but also require a lot of computation
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Normalized IPC

Web Java File
(Apache) (JRockit) (DBench)
Database Mail Search
(MySQL) (MS Exchange) (Ours)

[Reddi et al. 2010, Bing websearch]
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Some services can be overdesigned
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Specifically, to handle the peak utilization case

There is no benefit in beating service agreements (SLAS) at low

utilization
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Energy proportionality
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Energy proportionality: scale server power with load

Relatively stable across platform generations

24



