
Profiling a warehouse-scale computer
Svilen Kanev
Juan Pablo Darago
Kim Hazelwood
Parthasarathy Ranganathan, Tipp Moseley
Gu-Yeon Wei, David Brooks

Harvard University
Universidad de Buenos Aires

Yahoo Labs
Google Inc.

Harvard University



The cloud is here to stay

[http://google.com/trends, 2015]
2



Warehouse-scale computers (of yore)

datacenters built around
a few “killer workloads”

problem sizes >> 1 machine

3

...
distributed, but
tightly interconnected
services

communication through 
remote-procedure calls (RPCs)



Now “the datacenter is the computer”
(the WSC model has caught on)

4

“microservice architecture”

thousands of services are
“one RPC away”

“... about a hundred of services 
that comprise Siri’s backend...” 

[Apple, Mesos meetup 2015]

Did you mean: #pldi15

frequency[“#isca15”]++



How do modern WSC applications 
interact with hardware?

And what does that imply for future server processors?



Traditional profiling: load testing

6

Find representative 
inputs

Find representative 
operating point

Profile / optimize

Repeat

Isolate a service



Live datacenter-scale profiling
(Google-wide profiling)

Select random
production machines

~20,000 / day

GWP DB

[Ren et al. Google-wide profiling, 2010]
7

Profile each one (for a while)
without isolation

while running live traffic
for billions of users

Aggregate days, weeks,
years worth of execution



Live WSC profiling insights

8

Where are cycles spent in a datacenter?

Are there really no killer applications?

How do WSC applications interact with instruction caches?

How much ILP is there? Big / small cores?

DRAM latency vs. bandwidth?

Hyperthreading?



Where are WSC cycles spent?



No “killer” application to optimize for

10

Instead: a long tail of various different services

[1 week of sampled WSC cycles]



Ongoing application diversification

11

[~3 years of sampled WSC cycles]

Optimizing hardware one-application-at-a-time has diminishing returns



Within applications: no hotspots

Corollary: hunting for per-application hotspots is not justified

12

[search leaf node; 1 week of cycles]



Shared low-level routines; typical for larger-than-1-server problems

Hotspots across applications:
“datacenter tax’’

13



Hotspots across applications:
“datacenter tax’’

Prime candidates for accelerators in server SoCs

14

Only 6 self-contained routines account for ~30% of WSC cycles



Live WSC profiling insights

15

Where are cycles spent in a datacenter? Everywhere.

Are there really no killer applications? Datacenter tax.

How do WSC applications interact with instruction caches?

How much ILP is there? Big / small cores?

DRAM latency vs. bandwidth?

Hyperthreading?



Microarchitecture:
WSC i-cache pressure



Severe instruction cache bottlenecks

15-30% of core cycles wasted on
instruction-supply stalls

17

20,000 Intel IvyBridge servers
2 days
Top-Down analysis [Yasin 2014]



Severe instruction cache bottlenecks

Fetching instructions from L3 caches
Very high i-cache miss rates

10x the highest in SPEC
50% higher than CloudSuite

15-30% of core cycles wasted on
instruction-supply stalls

Lots of lukewarm code
100s MBs of instructions per binary; no hotspots

18



A problem in the making

I-cache working sets 4-5x 
larger than largest in SPEC

Growing almost 30% / year

significantly faster
than i-caches

One solution: L2 i/d partitioning

19



Live WSC profiling insights

20

Where are cycles spent in a datacenter? Everywhere.

Are there really no killer applications? Datacenter tax.

How do WSC applications interact with instruction caches? Poorly.

How much ILP is there? Big / small cores? Bimodal.

DRAM latency vs. bandwidth? Latency.

Hyperthreading? Yes.



To sum up

A growing number of programs cover “the 
world’s WSC cycles”. There is no “killer 
application”, and hand-optimizing each 
program is suboptimal.

Low-level routines (datacenter tax) are a 
surprisingly high fraction of cycles. Good 
candidates for accelerators in future server 
processors.

Common microarchitectural footprint: 
working sets too large for i-caches; many d-
cache stalls; generally low IPC; bimodal ILP; 
low memory bandwidth utilization.


