
Efficiency in warehouse-scale computers:
a datacenter tax study

a dissertation presented
by

Svilen Nikolaev Kanev
to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of
Computer Science

Harvard University
Cambridge, Massachusetts

September 2016

©2016 – Svilen Nikolaev Kanev
all rights reserved.

Dissertation advisor: Professor David Brooks and Gu-Yeon Wei Svilen Nikolaev Kanev

Efficiency in warehouse-scale computers:
a datacenter tax study

Abstract

Computation has been steadily migrating from isolated on-premise deployments to the datacenters

of a small number of large-scale cloud providers. The datacenters powering the cloud, also known

as warehouse-scale computers (WSCs), have a unique set of design constraints, balancing efficiency

at scale with ever-growing application needs for performance. Designing next-generation server plat-

forms forWSCs after the end ofDennard scaling is one of themost important challenges for computer

architects.

In order to guide such future designs, we performed the first (to the best of our knowledge) longi-

tudinal profiling study of a live productionWSC.Our performancemeasurements span tens of thou-

sands of machines over several years, while these machines serve the requests of billions of users. Even

though we observe significant diversity, both in applications and architectural behaviors, patterns be-

gin to emerge. We identify the “datacenter tax” – a set of shared low-level software components that

comprise almost 30% of all processor cycles in production datacenters. The constituents of this “tax”

– the necessary components to do distributed computation (data serialization, compression, etc.) –

are also prime candidates for optimization, both in software and through specialized hardware. The

latter case has especially high potential upside, but requires hardware accelerators that are markedly

different from traditional designs. These new “broad” accelerators face a unique set of challenges:

because calls to tax routines tend to be frequent, fast, and interspersed inside other application code,

accelerators must be optimized for latency rather than throughput, and because each one accelerator

iii

Dissertation advisor: Professor David Brooks and Gu-Yeon Wei Svilen Nikolaev Kanev

brings a limited amount of overall application speedup, overheads must be kept to a bare minimum.

We demonstrate by construction that, while non-trivial, meeting such constraints is possible. Our

memory allocation accelerator, Mallacc, reduces the latency of already fast malloc calls by up to 50%

while occupying only 0.006% of the silicon area of a typical high-performance core.

This thesis identifies the opportunity for broad acceleration and presents first steps towards de-

signing datacenter tax accelerators. We expect that it will spur additional interest, from industry and

academia, and will help bridge the gap between research in datacenters and in specialized hardware.

iv

Contents

1 Introduction 1

2 Tradeoffs between power management and tail latency 4

2.1 Energy proportionality in datacenters . 4
2.2 Idle management and latency . 7
2.3 Examining sleep patterns . 9
2.4 Frequency scaling . 17
2.5 Conclusion . 23

3 Profiling a warehouse-scale computer 24

3.1 Why profile a live datacenter? . 24
3.2 Background and methodology . 26
3.3 Workload diversity . 29
3.4 Datacenter tax . 31
3.5 Microarchitecture analysis . 34
3.6 Instruction cache bottlenecks . 35
3.7 Core back-end behavior: dependent accesses . 39
3.8 Simultaneous multi-threading . 42
3.9 Related work . 44
3.10 Conclusions . 45

4 XIOSim:
a rich extensible user-level x86 simulator 46

4.1 Why another simulator? . 47
4.2 Execution model . 48
4.3 Validation . 52
4.4 Case study: HELIX-RC . 56

v

5 Accelerating memory allocation 60

5.1 The need for broad acceleration . 60
5.2 Dynamic memory allocation trends . 61
5.3 Understanding TCMalloc . 63
5.4 Mallacc: a malloc accelerator . 70
5.5 Methodology . 76
5.6 Results . 79
5.7 Conclusion . 84

6 Conclusion 86

References 88

vi

Previous Work

Portions of this dissertation appear in the following:

1. S. Kanev, G. Wei and D. Brooks, “XIOSim: Power-Performance Modeling of Mobile x86
Cores”, International Symposium on LowPower Electronics andDesign (ISLPED), July 2012.

2. S. Campanoni, K. Brownell, S. Kanev, T. Jones, G. Wei and D. Brooks “HELIX-RC: An
Architecture-Compiler Co-Design for Automatic Parallelization of Irregular Programs”, In-
ternational Symposium on Computer Architecture (ISCA), June 2014.

3. S. Kanev. K. Hazelwood, G. Wei and D. Brooks, “Tradeoffs between Power Management and
Tail Latency inWarehouse-Scale Applications”, International Symposium onWorkload Char-
acterization (IISWC), October 2014.

4. S. Kanev, J. Darago, K. Hazelwood, P. Ranganathan, T.Moseley, G.Wei andD. Brooks, “Pro-
filing a Warehouse-Scale Computer”, International Symposium on Computer Architecture
(ISCA), June 2015.

5. S. Kanev, J. Darago, K. Hazelwood, P. Ranganathan, T.Moseley, G.Wei andD. Brooks, “Pro-
filing aWarehouse-Scale Computer”, IEEEMicro’s Top Picks in Computer Architecture Con-
ferences (TopPicks), June 2016.

6. S. Kanev, S. Xi, G. Wei and D. Brooks, “Mallacc: Accelerating Memory Allocation”, Interna-
tional Conference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), April 2017.

vii

1
Introduction

Recent trends show computing migrating to two extremes: software-as-a-service and cloud comput-
ing on one end, and more functional mobile devices and sensors (“the internet of things”) on the
other. Given that the latter category is often supported by back-end computing in the cloud, design-
ing next-generation cloud anddatacenter platforms is among themost important challenges for future
computer architectures.

Computing platforms for cloud computing and large internet services are often hosted in large data-
centers, referred to as warehouse-scale computers (WSCs) [8]. These warehouse-scale computers have
grown out of applications that cannot reasonably fit in a single machine due to either large resource
requirements, or stringent performance and fault-tolerance constraints that dictate the need for a dis-
tributed system. The design challenges for warehouse-scale computers are quite different from those
for traditional supercomputers or hosting farms, and emphasize system design for internet-scale ser-
vices across thousands of computing nodes for performance and cost-efficiency at scale. Patterson and
Hennessy, for example, posit that WSCs are a distinctly new class of computer systems that architects
must design to [49]: “the datacenter is the computer”[95].

Economies of scale arewithout a doubt the enabler forWSCs, but they can also hinder their contin-
ued improvement. Through reusing physical and power delivery infrastructure, as well as customized
server designs, WSCs have reached costs per computation significantly lower than those of desktops
or small rack-scale clusters [44, 114]. On top of that, even seemingly small relative improvements be-
come significant once deployed across full server fleets reportedly in the millions of machines [48].

1

However, research on finding these improvements has a high startup price – at reported construction
costs of $2 billion [120], one does not simply build a datacenter to experiment with.

The first two parts of this dissertation aim to address the high startup cost of research by character-
izing real, production-grade WSC applications and systems. They are (mostly) observational studies
on the interactions between WSC applications and server processors with regards to energy efficiency
(Chapter 2) and performance (Chapter 3). While they do expose opportunities for optimization and
several prototype implementations, the emphasis is on the characterization itself.

In Chapter 2, we outline the inherent tradeoff between aggressive processor power management
and quality of service (QoS) – the dominant metric of performance in datacenters. We examine 15
benchmarks representing workloads from Google’s datacenters on contemporary WSC servers. We
show that power management techniques have brought server designs close to achieving energy-pro-
portional computing since power became a major design constraint in the mid ’00s. To achieve that,
a large fraction of these applications very frequently toggle their cores between short bursts of activity
and sleep. In doing so, they stress sleep selection algorithms and can cause tail latency degradation or
missed potential for power savings of up to 10% in the case of web search. However, even after these
additional gains are potentially realized, an “energy proportionality gap” still remains. In an effort
to further reduce it, we profile datacenter applications for susceptibility to dynamic voltage and fre-
quency scaling (DVFS). We find the largest potential in DVFS which is cognizant of latency/power
tradeoffs on a workload-per-workload basis.

Chapter 3 shifts the focus to performance. With the performance gains fromDennard scaling gone
andMoore’s law tapering (recently dubbed “the winter of despair” [109]), understanding the interac-
tions of server applicationswith the underlyingmicroarchitecture becomes crucial, both for extracting
maximum efficiency out of existing hardware, and for designing future processors for the datacenter.
To aid such understanding, we set up a detailed microarchitectural study of live datacenter jobs, mea-
sured on more than 20,000 Google machines over a three year period, and comprising thousands of
different applications. We find a commonmicroarchitectural signature forWSC applications – typical
workloads place significant stress on instruction caches and prefer memory latency over bandwidth;
they also stall cores often, but compute heavily in bursts – and detail several general-purpose processor
optimization directions that can take advantage of it.

We also first find thatWSCworkloads are extremely diverse, creating the need for architectures that
can tolerate application variability without performance loss. However, some patterns emerge, offer-
ing opportunities for co-optimization of hardware and software. For example, we identify common
building blocks in the lower levels of the software stack. We call the collection of these blocks the “dat-
acenter tax” and show that it can comprise nearly 30% of cycles across jobs running in the fleet, which

2

makes its constituents prime candidates for hardware specialization in future server systems-on-chips.
Before we demonstrate one instance of such specialization, we take a detour to methodology in

Chapter 4. Due to the high cost of building hardware, virtually any architectural change is prefaced
by simulation experiments. Thus, accurate and extensible simulation infrastructure is a common pre-
condition for architecture studies. To that end, we developedXIOSim, a rich and precise x86microar-
chitectural model, which was designed specifically with low-level microarchitecture studies in mind.
We describe some of the major design decisions behind XIOSim which enable it to handle workloads
of significant complexity, usually reserved for less detailed simulation models. XIOSim is the result
of several years’ worth of efforts in accurately modelling current-generation x86 hardware, and we de-
scribe the methodology for such validation. Having such a model with a realistic baseline allows us
to predict the relatively small general-purpose performance changes that one can expect in the post-
Moore’s law era.

Finally, in Chapter 5, we present an in-depth evaluation of designing hardware specifically for the
largest component of the “datacenter tax” –memory allocation. We proposeMallacc, an in-core hard-
ware accelerator designed for broad use across a number of high-performance, modern memory allo-
cators. The design of Mallacc is quite different from traditional throughput-oriented hardware ac-
celerators. Because memory allocation requests tend to be very frequent, fast, and interspersed inside
other application code, accelerators must be optimized for latency rather than throughput and area
overheadsmust be kept to a bareminimum. Mallacc accelerates the three primary operations of a typ-
icalmemory allocation request: size class computation, retrieval of a freememory block, and sampling
of memory usage. Our simulated results show that malloc latency can be reduced by up to 50% with
a hardware cost of less than 1500 μm2 of silicon area, less than 0.006% of a typical high-performance
processor core.

3

2
Tradeoffs between power management and

tail latency

2.1 Energy proportionality in datacenters

Datacenter operators are faced with an inherent tradeoff betweenmanaging power consumption and
providing predictable performance. The scale of a WSC makes it a prime candidate for techniques
that reduce server power – the aggregate energy savings are beneficial from both a cost and an envi-
ronmental perspective. A typical WSC workload, such as web search, or ad serving, is comprised of a
tree of individual services, each with their respective service-level agreement (SLA) for performance.
Applying power saving techniques on the servers responsible for those services can adversely affect
performance and lead to invalidation of SLAs. Prior work on web search from Microsoft [55] and
Google [87] outlines this tradeoff between power efficiency and request latency.

Power efficiency of datacenters, and WSCs in particular, has been the target of a significant body
of research [7, 12, 47, 101]. It is well-established that datacenters spend a large portion of time under-
utilized. For example, Barroso and Hölzle show a typical CPU utilization of 5,000 Google servers in
the 10-50% range over 6 months [8]. This utilization variance is caused by changing user demand and
difficulties in inter-datacenter load-balancing. Figure 2.1 also demonstrates the varying user demand in
aGoogle production cluster inNorthAmerica running content admatching. Notice that for extended

4

0 12 24 36 48 60 72
Time (h)

0

25

50

75

100

Q
PS

(%
 o

f c
ap

ac
ity

)
Figure 2.1: Uধlizaধon of content ad matching in a producধon cluster, measured in incoming queries per second
(QPS), normalized by the allocated cluster capacity.

periods of time incoming requests (measured in queries per second, QPS) spawn the very wide range
of 15-105% of allocated capacity.

Handling such large swings in utilization in an energy-efficient manner is the main motivation be-
hind energy proportionality [7]. In an ideal energy-proportional system, server power consumption
would perfectly track the arrival patterns of requests shown in Figure 2.1. Achieving proportionality
requires that most power-hungry components be able to scale down their power consumption with
usage.

Today’s server systems are far from energy-proportional [8, 87]. Figure 2.3 verifies this claim on
three contemporary server platforms running a websearch leaf. If these platforms were proportional,
their power consumption would follow the dashed line which scales linearly from zero to maximum
power. This is not the case for the platforms in question. At a utilization of 50% they consume≈80%
of the maximum system power, not 50%, creating an energy proportionality gap [122]. Note
that, similar to observations byWong andAnnavaram [122], there is no drastic difference between the
three platforms in terms of power scaling, except for the data point at 0% usage, where Platform A
(the oldest of the three) consumes significantly more power.

In recentWSCplatforms, theprocessor consumes the largest portionof systempower [8, 55]. While
DRAMpower was considered as a challenger for this dominant position, recent advances in memory
power efficiency (especially the broader adoption of the low-voltage DDR3L standard) have changed
this trend. Figure 2.4 demonstrates that for a contemporary server platform: at full load the processors
consume 78% of the systempower.1 Furthermore, just the dynamic range of processor power between
fully idle and fully loaded is 67% of themaximum system power, compared to a dynamic range of 10%
for all other components combined (from Figures 2.2 and 2.4). This suggests that the processor has
the largest potential to bridge the energy proportionality gap in Figure 2.3, especially at mid-range

1 Power distribution data is measured at sense resistors before component regulators on a 16-core, Intel
SandyBridge platform with 256GB of DRAM.

5

Cores 21%
Uncore 16%
DRAM 11%
SSD 14%

Other 38%

Figure 2.2: Idle server
power is evenly split
between components.

0 20 40 60 80 100
QPS (% of capacity)

0

20

40

60

80

100

Po
w

er
 (%

 o
f m

ax
)

energy
proportionality gap

Platform A
Platform B
Platform C

Figure 2.3: Energy proporধonality (power as a funcধon
of incoming load) across three successive x86 server
plaĤorms has remained virtually unchanged.

Cores 69%

Uncore 9%

DRAM 8%
SSD 5%
Other 10%

Figure 2.4: Processor
power dominates on a
fully loaded machine.

utilization. In the rest of this chapter, we focus on processor power management.
We characterize two complementary mechanisms for power management: idle and active. In the

first one, idle power states (C-states), decrease core power when no threads have claimed a core and it
is executing the operating system idle loop. Processors expose different C-states to the OS that trade
sleep/wake-up latency for power savings by powering down different parts of the core and its corre-
sponding caches. In a distributed system, the longer sleep/wake-up latencies of aggressive sleep states
can fall on the critical path of incoming requests, and subsequently increase request latency. Thus, a
WSC has conflicting requirements between aggressive power savings and aggravated request latency
(and missing SLAs). In this light, we address the following questions:

• What are the sleep patterns of current WSC applications? Are applications’ idle periods short
enough to be affected by the choice of a particular sleep state?

• How much does C-state selection influence request latency and system power on the macro
level? In other words, by how much can proper selection improve latency, and what are the
maximal power savings from using idle periods?

We evaluate 15 benchmarks based onGoogle production workloads. We show that for a fraction of
them, sleep activity is sufficiently coarse-grained that their latency response is not affected by the choice
of a particular sleep state. However, fine-grained sleep activity does exist for certain applications. For
them, choosing inappropriate sleep states can result in a latency or system power cost of up to 10%.

Aggressive idle powermanagement, which is already included in contemporary processors, is how-
ever not sufficient to achieve an energy-proportional system. Thus, we turn our focus on active power
management, which slows down cores while they are busy with execution. We evaluate the potential
benefits of WSC applications from reducing voltage and frequency during memory-bound phases of
execution.

6

Wefirst show that the same set ofWSCbenchmarks is highlymemory-boundonaverage, suggesting
that active management through dynamic voltage and frequency scaling (DVFS) can be efficient. We
identify a wish list of characteristics that a practical DVFS solution in the datacenter should abide by.
We then show that it is unlikely to satisfy everything on this wish list simultaneously by implementing
a prototype system. Finally, we identify that the directions holding the largest promise are workload-
specialized and ultra-fine-grained DVFS, which warrant further study.

2.2 Idle management and latency

We briefly describe the mechanisms for idle power management, which is largely responsible for cur-
rent systems’ power savings at low load. While idle management saves significant energy, we show
that it can also cause latency degradation, given workloads that are bursty enough.

The mechanism for processor idle power management involves shutting down cores (or whole
sockets) without work to do. Figure 2.5 illustrates the process of entering a core idle state (C-state):
after there is no work to be scheduled in userspace, the kernel executes a specific instruction (mwait
on x86), with a parameter indicating the requested C-state. In Linux terminology, the logic to select
the appropriate C-state is called a governor.

The trade-off made by C-state governors is between power savings and wake-up latency. Deeper
C-states save more power by power gating larger portions of the chip, but require a longer wake-up
time (and potentially more energy) to restore state [80]. The minimum idle period for a specific C-
state to be profitable energy-wise is referred to as target residency. For example, Intel’s SandyBridge
microarchitecture exposes 5 core C-states [106]:

state residency wake-up latency
C0 (active) (active)
C1 1 μs 1 μs
C3 106 μs 80 μs
C6 345 μs 104 μs
C7 345 μs 109 μs

The kernel governor is not the only system in charge of idle power management. Recent architec-
tures include a shared power control unit (PCU), whose purpose is to orchestrate powermanagement
for the processor. The PCU can ignore software requests for a specific C-state, choosing to enter a
shallower one, if it estimates that the residency requirement of the deeper state will not be met. This
behavior is called C-state demotion and is controlled by a proprietary algorithm set by processor ven-

7

Userspace

Kernel
governor

Hardware
power control
unit (PCU)

mwait C6

C0

C6C3

fread()

Figure 2.5: The different layers of the hardware/sođware stack involved in managing idle power states. Dashed lines
indicate state transiধons only possible in hardware.

dors. Furthermore, the PCU can choose to transition a core between different sleep states without
waking it up – a knob not available to software.

Thus, idle power can be independently managed both in hardware and software. Both approaches
have their benefits. The PCU has a closer and more fine-grained view of different cores’ power con-
sumption, as well as finer-grained control knobs. On the other hand, software has a global, non-
processor-centric view of the full system, and can predict future events, such as incoming disk in-
terrupts, and react accordingly. Combining management on the two layers such that they co-operate
and do not get involved in “power struggles” [100] requires a detailed understanding of both of them
in isolation. For the remainder of this chapter, we focus predominantly on the software layer.

Latency cost Idle power states can save a significant amount of system power [2, 67, 87]. They are
largely responsible for the power scaling of current platforms demonstrated in Figure 2.3 (for example,
the sharp “knee” of the curve for Platform C near 12%QPS is the result of a whole socket being able
to go idle at the same time). However, selecting the optimal sleep state requires accurate prediction of
sleep length. Predicting an idle period too short may cause missed opportunities for power savings,
if a deeper sleep state is available. Similarly, predicting it too long may cause a premature wake-up,
adding the state wake-up latency to the already time-critical interrupt processing.

We refer to the second effect as the latency cost of sleep. Figure 2.6 illustrates how significant that cost
can be. It shows the median round-trip latency of a remote procedure call (RPC) layer microbench-
mark at different loads. 2 The resulting workload is ideal for investigating the latency effects of idle

2 Specifically, one server sends a small (several bytes) payload over the network and waits for a response,

8

100 1k 10k
QPS

0

100

200

300

400

M
ed

ia
n

la
te

nc
y

(µ
s)

Figure 2.6: Round-trip latency degradaধon for a RPC transport layer for varying queries per second (QPS). Too ag-
gressive sleep states (at low QPS) significantly degrade request latency.

states – CPU utilization is low, so cores sleep often, and request processing times are smaller than
100μs, resulting in very fine-grained sleep behavior.

Under low load (100 QPS), the cores on the critical path of computation are idle for a significant
fraction of time and do enter deep sleep states. This results in an overall 2.4× increase in request
latency compared to the high-load (10,000 QPS) case. Such latency degradation is unintuitive – in
the canonical distributed system governed by queuing effects increasing incoming request rates leads
to higher latencies, not lower.

We want to verify whether such sleep effects manifest themselves on macro-scale benchmarks. In
order for them to be comparable tomore typical queuing effects, request processing latencies, or query
interarrival rates, must be comparable to deep C-state residencies – on the order of hundreds of μs.
In other words, the workload must be “bursty”. In examining C-states, LeSueur and Heiser [67]
notice that an Apache web server exhibits such bursts with lengths smaller than 1ms. Furthermore,
Meisner et al. [86] show that a web search cluster can be modelled with an average query interarrival
rate of 300μs. This motivates a more detailed characterization of WSC benchmarks, with the aim
to determine whether they exhibit sub-millisecond sleep periods, and are therefore susceptible to the
latency cost of sleep.

2.3 Examining sleep patterns

In this section, we look into the idleness patterns of current Google applications. This is a necessary
first step in determining whether datacenter workloads are potentially vulnerable to the latency cost
of deep sleep. Since our ultimate goal is to better understand power vs. tail latency trade-offs, we select

measuring the round-trip latency. The receiver dedicates several cores to handling network interrupts and to
forwarding the payload to a single core on the same chip, which immediately sends the payload back to the
sender.

9

Name Description Relevant metric
latency-insensitive
saw String parsing in the Sawzall domain-specific language [96].

Test counts words in production logs.
QPS

openssl Encryption test. Several standard encryption algorithms. QPS
flight-
search

Flight search and pricing engine. QPS

books Book scanning perspective correction. QPS
page-ranking Signaling search relevance by analyzing the hyperlink struc-

ture of web pages [91].
QPS

ml1 Machine learning framework. QPS
ml2 Alternative machine learning framework for large dataset

analysis.
QPS

latency-sensitive, IO-centric
sstable Immutable, key-value, string-based storage for BigTable

data [22].
latency

bigtable-
single

Scalable, distributed storage [22]. Local single-machine tests. QPS; latency

disk Low-level distributed storage driver. Test replays access traces
from various production services.

QPS; latency

bigtable Multi-machine BigTable test. More closely representative of
real usage.

QPS; latency

latency-sensitive, CPU-intensive
search1 Leaf node in a search cluster [87]. latency
search2 Alternative search leaf node. latency
ml3 Machine learning framework to group text in meaningful

clusters.
QPS; latency

ads Content ad targeting –matches ads with web pages based on
page contents.

latency

Table 2.1: Benchmark names and descripধons.

a subset of our benchmarks, which satisfy the constraints of: being latency-sensitive; and requesting
idle states on a sub-ms scale. We find that popular applications, like search, or ad serving, fall into this
category. For them, we measure the maximum impact that C-state selection can have on tail latency
and system power – up to 10-15%.

2.3.1 Experimental setup

Hardware configuration Weperformall our experiments on a 2-socket, 16-core Intel SandyBridge-
based server, which has a total of 32 thread execution contexts. Its idle power states are as described
in Section 2.2. We fix all cores’ frequency at 2.6 GHz, disabling frequency up-scaling (referred to as

10

Intel TurboBoost). This is done because the additional frequency headroom is heavily dependent on
idle power management, and controlled by an unknown algorithm in the processor’s PCU. Enabling
TurboBoost can bring significant additional variance to our measurements.

We also disableC-state demotion for similar reasons. Somepriorwork has shown that demotion can
improve performance on some workloads [106]. However, in our experiments, allowing hardware to
override software C-state decisions resulted in significant run-to-run variance, large enough to hide
any correlation between changing software policies and overall performance results.

Software and workloads We characterize the sleep behavior of a variety of applications. To that
end, we capture timing information for every C-state transition as requested by the kernel; as well as
for the state’s corresponding wake-up transition to the active state C0. This allows us to measure the
time each logical core spends at a certain C-state. We also measure total system power at the power
supply unit, and average it over the whole benchmark execution.

The requested C-state transitions are captured using ktrace [11] in the Linux kernel and collected
with perf [32] during the regions of interest for the different benchmarks, after a necessary warm-up
period. We capture every transition (as opposed to sampling), because we require two consecutive
transitions to determine the residency in a given C-state. Since transitions rarely occur more often
than once every 10μs, and collection is appropriately buffered, the characterization process does not
incur significant overhead (at least significant enough to affect latency for the RPC microbenchmark
described in Section 2.2).

We use a variety of workloads that represent stages of large-scale Internet services. While not com-
pletely representative of any particular WSC, these applications cover different classes of workloads
from large datacenters. The application names and short descriptions are provided in Table 3.1. We
split them into three groups based on their latency tolerance, and the amount of IO operations that
they perform. The last column in the table lists the performance metrics used to define the quality of
service (QoS) for the particular service.

Because these are internal Google binaries, our exact experiments are hard to reproduce externally.
This is why we use a large number of workloads, with expected very different sleep durations and
confirm which ones show the tradeoffs we expect to see. It is also worth noting that after the initial
publication of this work, several researchers have observed qualitativey similar tradeoffs between sleep
state management and latency for open-source workloads with sub-ms sleep activity (memcached [71,
128], Nginx [71] and synthetic traces [50]).

While in a real-world scenario these services are deployed on a large number of machines, for prac-
ticality of our experiments we constrain them to a single server, plus another one for load generation

11

for the workloads that require it. The resulting load tests retain idiosyncrasies of the live services they
model (e.g. bursty and changing incoming traffic). Since single-server tests are prone to run-to-run
variance, we repeat all runs at least three times, often more, based on applications’ individual charac-
teristics.

2.3.2 The typical sleep duration varies

In order to characterize idle behavior of our benchmarks, wemeasure the time each logical core spends
at every available C-state by recording state transitions in the kernel. We later use this information
to filter the benchmarks that are likely to be affected by deep sleep. Since the main purpose of this
experiment is to capture the sleep patterns of applications, and not of the hardware platform, we only
distinguish between “sleep” and “active” states.

Figure 2.7 shows the results of this characterization. The figures are in histogram format, with the
x-axis bins representing the amount of time between transitioning in and out of sleep, and the y-axis
showing the fraction of total execution time spent in sleep or active mode. The sum of Active bars
adds up to the processor utilization of the particular service. In these plots, bursty applications tend
to spend a larger fraction of time transitioning between states with shorter residency and show up on
the left side of those histograms, while thosewith very long periods of activity/idleness cluster towards
the right.

Latency-insensitive applications We first look into those throughput-oriented benchmarks for
which latency is not a relevant metric. For all of them, latency is not important because either they
are implemented in a throughput-centric model (such asMapReduce); or they are off the critical path
of major services (openssl); or the quanta of work over which latency can be defined are too large
from an architecture standpoint (e.g. multi-second requests for flight-search). Figures 2.7(a)-(g)
show the sleep length distribution for such applications. For most of them (except page-ranking
and ml2), idle power management activity is very coarse-grained, with sleep and active periods well
longer than 1ms. Since end performance is not sensitive to individual request latency in this case, the
latency effects of deep sleep are irrelevant.

Latency-sensitive IO-heavy applications The second group of benchmarks has relatively low
CPUusage and generates a large number of IO requests. These benchmarks are mostly different com-
ponents of BigTable – the scalable distributed storage system at Google [22]. Figures 2.7(h)-(k) show
the granularity of their sleep behavior. All benchmarks in this group show a significant fraction of
sleeps and bursts of activity with sub-millisecond lengths. In the case that is closest to real usage, the

12

100 101 102 103 104 105 106

C-state residency (µs)

0

10

20

30

40

50

60
D

is
tri

bu
tio

n
of

 ti
m

e
(%

) bursty stable

Sleep Active

(a) saw

100 101 102 103 104 105 106

C-state residency (µs)

0

10

20

30

40

50

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(b) ml1

100 101 102 103 104 105 106

C-state residency (µs)

0

20

40

60

80

100

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(c) openssl

100 101 102 103 104 105 106

C-state residency (µs)

0

10

20

30

40

50

60

70

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(d) flight-search

100 101 102 103 104 105 106

C-state residency (µs)

0

10

20

30

40

50

60

70

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(e) books

100 101 102 103 104 105 106

C-state residency (µs)

0
5

10
15
20
25
30
35
40

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(f) page-ranking

100 101 102 103 104 105 106

C-state residency (µs)

0

10

20

30

40

50

60

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(g) ml2

100 101 102 103 104 105 106

C-state residency (µs)

0

10

20

30

40

50

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(h) sstable

100 101 102 103 104 105 106

C-state residency (µs)

0
5

10
15
20
25
30
35
40

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(i) bigtable-single

Figure 2.7: Idle state distribuধon of WSC benchmarks. (a)-(g) Latency-insensiধve benchmarks: the majority of sleep
acধvity is coarse-grained, with sleep/computaধon lengths, larger than 1ms. (h)-(k) Latency-sensiধve, IO-centric
benchmarks: a significant amount of execuধon is spent requesধng sleep for short periods of ধme (<1ms).

multiple-machine BigTable test (bigtable, Figure 2.7k), short-length activity occurs for more than
80% of the execution time. This confirms the preconception of IO codes being bursty. It also implies
that their latency might be significantly affected by C-state selection algorithms.

13

100 101 102 103 104 105 106

C-state residency (µs)

0
5

10
15
20
25
30
35
40

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(j) disk

100 101 102 103 104 105 106

C-state residency (µs)

0

10

20

30

40

50

60

70

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(k) bigtable

100 101 102 103 104 105 106

C-state residency (µs)

0

10

20

30

40

50

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(l) ml3

100 101 102 103 104 105 106

C-state residency (µs)

0

10

20

30

40

50

60

D
is

tri
bu

tio
n

of
 ti

m
e

(%
) bursty stable

Sleep Active

(m) search1

100 101 102 103 104 105 106

C-state residency (µs)

0

10

20

30

40

50

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(n) search2

100 101 102 103 104 105 106

C-state residency (µs)

0
10
20
30
40
50
60
70
80

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(o) ads

100 101 102 103 104 105 106

C-state residency (µs)

0
10
20
30
40
50
60
70
80

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(p) search1 at 15% of max QPS

100 101 102 103 104 105 106

C-state residency (µs)

0

10

20

30

40

50

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(q) search2 at 30% of max QPS

100 101 102 103 104 105 106

C-state residency (µs)

0

10

20

30

40

50

60

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

Sleep Active

(r) ads at 45% of max QPS

Figure 2.7: Idle state distribuধon of WSC benchmarks. (l)-(o) Latency-sensiধve, CPU-intensive benchmarks: the
programs completely occupy the processor (or a subset of cores) for long periods, leaving no room for fine-grained
power management. (p)-(r) Latency-sensiধve, CPU-intensive (low QPS) benchmarks: when emulaধng low-acধvity
periods, short sleeps begin to emerge.

Latency-sensitiveCPU-heavy applications Finally, Figures 2.7(l)-(o) show the group ofCPU-
bound benchmarks. They either occupy every core in the system (search1, search2, ads), or com-
pletely utilize just a subset of cores (the rest). Either case requires very minimal power management.

14

For the results so far, we assumed that services were fed with the maximum QPS sustainable by a
single machine. If we restrict the rate of incoming requests, power management becomes relevant for
these applications, too. In fact, this is amore realistic scenario since datacenter serverCPUutilization is
typically far below 100%, as seen in Section 5.1. Figures 2.7(p)-(r) show the sleep length distribution for
the active logical cores of search1, search2 and ads when incoming QPS is respectively 15, 30 and
45% of the maximum sustainable by a single server. These particular numbers are chosen to represent
CPU utilization in the 30-60% range. Notice that in this case, a significant part of sleep and activity
periods is short in length (<1ms). For example, search1 has sub-millisecond sleep activity for more
than 70% of the execution time.

Based on these workload observations, we can select a subset of benchmarks that are likely to be
affected by sleep policies, and continue the analysis with them. We choose the major services that
show bursty sleep behavior – bigtable and the low-QPS variants of search1, search2 and ads.

2.3.3 Selecting the proper C-state matters

After identifying macro-level benchmarks that can be affected by C-state management, we can quan-
tify themaximumeffect that different governors could have on the benchmark execution. Themetrics
that we look at are tail request latency and average power. Tail latency here refers to 95-th percentile
latency for search1 and ads, and 99-th percentile for bigtable and search23.

In order to find the maximum improvement in both metrics, we use two trivial C-state governors
– deep and shallow. As their names imply, deep always selects the deepest sleep state (C7) whenever
a thread is idle, saving a maximal amount of power, but at the same time having the worst effect on
latency due to its long residency requirement; while shallow always selects the least aggressive state
(C1), saving little power, but also increasing latency minimally due to its fast wake-up time.4

Thus, the room that a C-state governor has for power savings is at most the difference between
shallow power and deep power. Similarly, the room for latency improvement is given by the dif-
ference in deep and shallow latency. Because of the trade-off between power savings, and wake-up
latency, a specific C-state selection algorithmwouldnot realize thesemaximumgains in request latency
and power simultaneously.

Figure 2.8a shows the amount of potential gains for the four applications. The bars labelled La-
tencymeasure latency reduction of shallow over deep; ones labelled Powermeasure power savings

3For purely practical reasons – different benchmarks report different percentiles.
4We found that keeping the core active in C0 by busy-spinning in the kernel has worse latency effects than

shallow. This was counter-intuitive, but consistent. Therefore, we use shallow as the policy with the least
power savings.

15

search1 ads
bigtable

search2
10

5

0

5

10

15

20

Be
st

-c
as

e
im

pr
ov

em
en

t i
n

la
te

nc
y

/ p
ow

er
 (%

)

Latency Power

(a) ideal-improvement

search1 ads
bigtable

search2
10

5

0

5

10

15

20

Im
pr

ov
em

en
t o

ve
r w

or
st

-c
as

e
la

te
nc

y
/ p

ow
er

 (%
)

Latency Power

(b) menu

Figure 2.8: Maximum improvement in average power and tail latency achievable by C-state selecধon (a). Achieving
the maximum improvement for both power and latency with a single policy is unlikely, as evidenced by the realisধc
menu governor (b).

of deep over shallow. As expected, the potential power reduction from using deeper C-states are
significant, averaging 8.6% across applications. Notice that this is aggregate power consumed by the
server, not only by its processors. On the other hand, potential tail latency reduction varies more with
the choice of workload.

For bothsearch1 andbigtable the relative improvement in tail latency is significant, and close in
value to the potential for system power savings. This implies that realistic C-state selection algorithms
can trade off optimizing for any of the two metrics. In the case of ads, the potential for improving
tail latency is substantially lower. This is consistent with Figure 2.7r, which shows that ads has the
smallest fraction of bursty sleeps among the four applications examined here.

16

Interestingly, in the case of search2, the average 99-th percentile latency increases when using
shallow sleep, relative to deep, although the run-to-run variance is so high that it is hard to draw
anymajor conclusions. search2 is known to containmany application-specific optimizations for tail
latencies (e.g. keeping busy-spin threads), and some of those customizations might be the reason for
degraded performance when sleep is cheap (shallow). This effect illustrates the problem of trying to
simultaneously optimize a single metric in multiple layers of the hardware/software stack.

Finally, Figure 2.8b shows that current prediction algorithms can realize a large fraction of the ideal
gains demonstrated in Figure 2.8a. The solid bars show the real improvements in power/latency of the
menu governor [92] in the Linux kernel, version 3.7, 5 compared to the best-case gains in Figure 2.8b
(dashed lines).

While it is unlikely that the ideal gains in both latency and power can be realized simultaneously,
there is still room for improvement in C-state selection. To show that, we tested a simple extension
to the menu algorithm, wrapping it in a feedback loop that curbs too aggressive sleep. It measures the
frequency of pre-mature wakeups, and adjusts the menu prediction towards a shallower state if that
frequency is above a configurable threshold. That simple change alone provides 5 percentage points
(pp) decrease in bigtable tail latency, while keeping power within ±1pp of menu results over all
benchmarks.

While similar changes in C-state selection can help offset worst-case performance degradation (like
the one seen inFigure 2.6), even the ideal additional power gains inFigure 2.8a are insufficient tobridge
the energy proportionality gap identified in Section 2.1 One obvious direction for that is deeper C-
states, which save more power, but do not take longer to resume from. However, such improvements
are by no means WSC-specific, and hardware designers have likely already optimized their designs for
such win-win opportunities. Thus, we turn our attention to another opportunity for power savings
– active management through frequency scaling.

2.4 Frequency scaling

Exploiting periods of inactivity is not the only way to save power. While an application is not sleeping
– not given up a core andwith instructions in flight – there are still opportunities for power reduction.
These come fromexploitingmemory and last-level cache (LLC) stalls. Dynamic voltage and frequency
scaling (DVFS) has been widely studied as a mechanism for reducing power while a core is stalled.

5In short, the menu algorithm estimates the expected sleep time (by fitting a simple regression model) and
selects the appropriate C-state for that time based on an estimated system latency tolerance.

17

sa
w

op
en

ss
l

fli
gh

t-s
ea

rc
h

bo
ok

s
pa

ge
-ra

nk
in

g
m

l1
m

l2
ss

ta
bl

e
bi

gt
ab

le
-s

in
gl

e
di

sk
bi

gt
ab

le
se

ar
ch

1
se

ar
ch

2
ad

s
m

l3

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sj

en
g

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
3.

xa
la

nc
bm

k0

20

40

60

80

100

St
al

le
d

cy
cl

es
 (%

)

Figure 2.9: WSC benchmarks are more likely to keep cores stalled than tradiধonal SPECint applicaধons.

We will investigate the potential of DVFS which exploits workload phase behavior, ideally without
performance overheads and without specific workload adaptation.

While there have beenmany (mostly academic) proposals to exploit stall periods with active power
modes [51, 52, 61, 101, 123, 130], they have not made their way to conventional operating systems. For
example, theLinuxkernel’s support for frequency scaling is basedon adifferent premise. Power-saving
frequency governors (ondemand, powersave) useOS-reported processor utilization as a proxy for the
system’s latency sensitivity, and scale frequency down when processor utilization is low. While such a
heuristicmight be useful for the desktop andmobile domains,WSC requirements differ – services can
be very sensitive to latency regardless of how high processor utilization is (e.g. disk in Figure 2.7j).

Instead, our exploration focuses on memory-bound phases of execution, during which slowing
down cores does not affect end performance. It is motivated by the fact thatWSC applications appear
highly memory-bound on aggregate. Figure 2.9 illustrates that – it measures average stall cycles, that
is, cycles when the cores in the system are not sleeping, but also not committing instructions. Thema-
jority ofWSC applications have stall ratios comparable to those of the most memory-bound SPECint
applications (429.mcf and 471.omnetpp), which have also shown largest benefits from DVFS [113].
Some open-source datacenter workloads also show comparable average memory-boundness [39].

This high degree of memory-boundness suggests that WSC applications may benefit significantly
fromDVFS. In the rest of this section,wepostulate awishlist of requirements that apractical datacenter-
ready DVFS scheme would need. We then follow up with a simple prototype implementation, show-
ing that large gains are not realistic without either workload-specific tuning, or fine-grain hardware
support.

18

2.4.1 Ideal requirements

An ideal active power management scheme for a WSC environment would have the following char-
acteristics:

Workload-agnostic It is well-known that different workloads have varying performance head-
rooms for power savings through DVFS [113]. Some of the factors influencing this headroom are easy
to quantify with only global machine knowledge (e.g. memory-boundness through hardware perfor-
mance counters). Others are more workload-specific. Consider the search1 example in the bottom
plot of Figure 2.10 (for now, focus on any set of circles, which represent average request latency). At
low arrival rates, the average latency to handle a request is far from the targeted SLA and aggressive
power management is desirable. However, when load is high latencies get dangerously close to the
SLA and performance should be prioritized.

A DVFS policy that exploits such workload-specific knowledge can certainly lead to larger power
savings than a generic one. But, in the WSC case, it also requires detailed understanding of (and a
common software interface to) the performance properties of a potentially large number ofworkloads.
Such complexity is significantly exacerbated in a shared cluster – with many jobs, often co-scheduled
together, and having overprovisioned performance requirements [104]. A workload-agnostic policy,
on the other hand, only uses globalmachine- and system-level information, without having to address
such complexities. We investigate whether such a policy can also lead to power savings.

Zero-tolerant Once a large number ofmachines are involved in a tiered, high-fanoutWSC service
tree, individual machine performance variability is significantly amplified at the overall service level.
For example, Dean and Barroso illustrate a case where the 99th-percentile latency increases by more
than 10× between one random leaf node in such a tree and its parent node (which has to wait for
all children to return an answer)[34]. This conventional wisdom leads datacenter operators to the
conclusion that performance variability is unacceptable if it affects latency metrics. Then, unless a
DVFS policy is able to monitor such latency metrics (which would require workload specificity6), it
has to be very conservative, and only cause a minimal performance degradation, if any. We call this
property zero-tolerance.

Thread-granular An ideal DVFS policy for WSC applications is also able to adjust performance
states on a per-thread basis. This requirement is obviously beneficial in the shared cluster case, where

6 ... and possibly significant complexity. One example is the work by Raghavendra et al. [100], which uses a
multi-layer coordinated control-theoretic framework that bounds the distribution of request latency.

19

0 20 40 60 80 100
QPS (% of capacity)

40
50
60
70
80
90

100

Po
w

er
 (%

 o
f m

ax
) baseline

0% slack
20% slack

energy
proportional

0 20 40 60 80 100
QPS (% of capacity)

0

50

100

150

La
te

nc
y

(%
 o

f S
LA

)

baseline
0% slack
20% slack

Avg SLA Average 95-th %

Figure 2.10: DFS on search1 becomes effecধve only ađer exploiধng SLA slack (20% slack lines), not in the zero-
tolerance case (0% slack lines).

co-scheduling multiple tasks that do not allocate all cores in a machine is the norm [104]. Dedicated
clusterswould also benefit significantly fromper-threadDVFS.They typically runquery-drivenwork-
loads, where different threads execute different incoming queries, whose execution phases do not nec-
essarily overlap.

Note that implementing thread-granularDVFS on contemporary x86 server processors is challeng-
ing. This is mostly due to the limited number of frequency and voltage domains, which only allow
scaling voltage and frequency for all cores together [70]. This could change in the future when per-
core voltage regulation [62] amplifies the potential power savings.

Fine-grained Finally, different incomingqueries are uncorrelatednot only among threads, but also
within a single thread. This limits the duration of memory-bound phases exploited by DVFS to the
latency of a single query. However, the majority of these queries are short – Meisner et al. [87] show
an example of more than 90% of queries in a search leaf completing in 5ms.

Previous phase-based DVFS approaches looked into much coarser-grained intervals – e.g. 100M
instructions [52] – which would contain many independent (i.e. uncorrelated) requests in a WSC
application. Furthermore, in simulation, IPC variability (and, hence, potential DVFS gains) of SPEC

20

benchmarks has been shown to decrease bymore than 100× between intervals of 300 and 10K instruc-
tions [102]. This high sensitivity to granularity implies that an efficient WSC policy would benefit
significantly from fine-grained control.

2.4.2 Prototyping zero-tolerance DFS

WhilemanyDVFS proposals satisfy two or three of the above requirements [51, 52, 61, 101, 123, 130], we
are unaware of a system that matches all of them. Thus, we implemented a simple DVFS prototype
to (i) attempt to satisfy all four; and (ii) estimate the importance of each one in case it cannot. As
expected, our prototype fails to satisfy all of them simultaneously on contemporary server hardware,
suggesting there might be a fundamental tradeoff, and that some need to be relaxed in order to realize
significant power savings.

The mechanism we used for active power management is clock duty cycle modulation [129]. It al-
lows adjusting per-core effective clock frequencies. Note that it does not adjust voltage (current server
processors only have a single core voltage plane), so at best it can achieve power savings linear with fre-
quency. We adjust frequencies within the TurboBoost range (2.6-3.3GHz at ≈200MHz increments
for the system described in Section 2.3.1).

The prototype implements a simple algorithm which empirically estimates the sensitivity of per-
formance to frequency, similar to the one proposed by Hsu and Feng [51]. Sensitivity, or CPU-
boundness, is defined by a simple linear model of normalized instructions per second (IPS) versus
frequency: Sensitivity = ΔIPS

IPS × f
Δf , and used to predict performance at different frequencies. This is

done on a per-core basis, with special attention to accounting for hyperthreads.7

The sensitivity model is used to predict the IPS decrease from lowering a core’s frequency at every
time step. If the predicted performance degradation is lower than a target “slack” parameter, the core
asks for a lower frequency. A slack value of 0% represents the zero-tolerance policy from the previous
section which only exploits highly memory-bound phases during which performance is insensitive to
core frequency. Both more complex phase detection mechanisms [52] and frequency selection poli-
cies [123] are certainly possible (and have been summarized previously [61]), but are not the purpose
of this work. Our prototype implementation is the minimum realistic case that matches the four re-
quirements in Section 2.4.1.

Figure 2.10 shows the results of applying this implementation to search1 at different incoming
QPS rates. The top plot displays power consumption at different values of the slack parameter, while

7Furthermore, if there is not enough frequency variability as a result of the control algorithm, the prototype
occasionally perturbs cores to the minimum and maximum frequencies, so the sensitivity model does not get
stale.

21

the bottom one illustrates the effects of power savings on average and 95th-percentile latency. Most
importantly, zero-tolerance DVFS does not find periods of complete memory-boundness at the 1ms
granularity, and does not save power. This is evident from the virtually identical lines labelled “base-
line” and “0% slack”.

Workload-controlled DVFS Relaxing the zero-tolerance constraint has the expected effect (9%
full-system power savings on average at 20% IPS slack), but at a significant increase in tail latency (the
line labelled “95-th %”). Relaxing even further, a hypothetical system that includes per-core voltage
control can achieve 20% full-system power savings (assuming P ∝ f2.4 [87]). For some loads, when
latency is significantly below the SLA (for example, QPS <80% on Figure 2.10), the increase in la-
tency is completely tolerable – that is, there are no gains from aggressively beating the SLA. Recently,
Lo et al. proposed a system that exploits this property for a websearch benchmark, adjusting DVFS
aggressiveness based on the difference between observed latency and the latency agreement [77]. As
discussed earlier, while such per-workload systems achieve impressive power savings for ubiquitous
applications, deploying them across a wide range of different workloads could be challenging.

Phase granularity Another factor that could be limiting the power savings of the tested prototype
is the granularity of program phases. For our software implementation, the minimal DVFS period
that causes non-negligible performance loss is 1ms. We also ran experiments with 100μs intervals, and,
despite the performance penalty of triggering decisions too often, power results were virtually identi-
cal to the ones in Figure 2.10. This implies that memory-bound phases in applications like search1
either do not exist, or manifest themselves on a finer granularity than≈100K instructions. The latter
case is more likely – search1 is highly stalled on average (Figure 2.9), and simulation studies [62, 102]
(albeit on different workloads) have shown that shorter phases have orders of magnitude higher vari-
ability inCPU-boundness. Directly confirming the existence of suchultra-fine-grainedphases inWSC
applications would require at least a separate simulation study (although in Chapter 3 we find strong
evidence); exploiting them–hardware support which does not have to pay the overheads of switching
to the kernel so often.

The analysis in this section suggests that, while initially appealing, a DVFS solution that is at the
same time workload-independent, zero-performance-overhead, fine-grained and per-thread does not
work on current server hardware. For significant power gains, one needs to either exploit workload
characteristics oruse additional hardwarewhich can track extremely short-livedmemory-boundphases,
or simply tolerate performance variability.

22

2.5 Conclusion

With the increasing popularity of online services, intelligently managing power for warehouse-scale
machines is becoming ever more relevant. We have characterized datacenter workloads, focusing on
opportunities to save power at all ranges of processor utilization. We have shown that such workloads
are neither completely CPU- nor IO-bound. Instead, they mix bursts of computation with short
periods of sleep, emphasizing the need for comprehensive sleep state selection algorithms. We have
shown that power savings are possible while not sleeping, too, but only after a careful and workload-
specific frequency scaling policy.

23

3
Profiling a warehouse-scale computer

3.1 Why profile a live datacenter?

At datacenter scale, understanding performance characteristics becomes critical – even small improve-
ments in performance or utilization can translate into immense cost savings. Despite that, there has
been a surprising lack of research on the interactions of live, warehouse-scale applications with the un-
derlyingmicroarchitecture. While studies on isolated datacenter benchmarks [39, 126], or system-level
characterizations of WSCs [9, 65], do exist, little is known about detailed performance characteristics
of at-scale deployments.

This chapter presents the first (to the best of our knowledge) profiling study of a live produc-
tion warehouse-scale computer. We present detailed quantitative analysis of microarchitecture events
based on a longitudinal study across tens of thousands of server machines over three years running
workloads and services used by billions of users. We highlight important patterns and insights for
computer architects, some significantly different from common wisdom for optimizing SPEC-like or
open-source scale-out workloads.

Ourmethodology addresses key challenges to profiling large-scale warehouse computers, including
breakdownanalysis ofmicroarchitectural stall cycles and temporal analysis ofworkload footprints, op-
timized to address variation over the 36+month period of our data (Section 3.2). Even though extract-
ing maximal performance from aWSC requires a careful concert of many system components [8], we

24

choose to focus on server processors (which are among the main determinants of both system power
and performance [59]) as a necessary first step in understanding WSC performance.

From a software perspective, we show significant diversity in workload behavior with no single
“silver-bullet” application to optimize for and with no major intra-application hotspots (Section 3.3).
While we find little hotspot behavior within applications, there are common procedures across ap-
plications that constitute a significant fraction of total datacenter cycles. Most of these hotspots are
in functions unique to performing computation that transcends a single machine – components that
we dub “datacenter tax”, such as remote procedure calls, protocol buffer serialization and compression
(Section 3.4). Such “tax” presents interesting opportunities formicroarchitectural optimizations (e.g.,
in- and out-of-core accelerators) that can be applied to future datacenter-optimized server systems-on-
chip (SoCs).

Optimizing tax alone is, however, not sufficient for radical performance gains. By drilling into the
reasons for low core utilization (Section 3.5), we find that the cache and memory systems are notable
opportunities for optimizing server processors. Our results demonstrate a significant and growing
problem with instruction-cache bottlenecks. Front-end core stalls account for 15-30% of all pipeline
slots, with many workloads showing 5-10% of cycles completely starved on instructions (Section 3.6).
The instruction footprints for many key workloads show significant growth rates (≈30% per year),
greatly exceeding the current growth of instruction caches, especially at the middle levels of the cache
hierarchy.

Perhaps unsurprisingly, data cache misses are the largest fraction of stall cycles, at 50% to 60% (Sec-
tion 3.7). Latency is a significantly bigger bottleneck than memory bandwidth, which we find to be
heavily over provisioned for our workloads. A typical datacenter application mix involves access pat-
terns that indicate bursts of computations mixed with bursts of stall times, presenting challenges for
traditional designs. This suggests that while wide, out-of-order cores are necessary, they are often used
inefficiently. While simultaneous multithreading (SMT) helps both with hiding latency and overlap-
ping stall times (Section 3.8), relying on current-generation 2-wide SMT is not sufficient to eliminate
the bulk of overheads we observed.

Overall, our study suggests several interesting directions for future microarchitectural exploration:
design of more general-purpose cores with additional threads to address broad workload diversity,
with specific accelerators for “datacenter tax” components, improved emphasis on the memory hier-
archy, including optimizations to trade-off bandwidth for latency, as well as increased emphasis on
instruction cache optimizations (partitioning i-cache/d-cache, etc). Each of these areas deserves fur-
ther study in the quest of more performant warehouse-scale computers.

25

3.2 Background and methodology

This study profiles a production warehouse-scale computer at large, aggregating performance data
across thousands of applications and identifying architectural bottlenecks at this scale. The rest of this
section describes a typical WSC software environment and then details the methodology that enables
such analysis.

Background: WSC software deployment We begin with a brief description of the software en-
vironment of a modern warehouse-scale computer as a prerequisite to understanding how processors
perform under a datacenter software stack. While the idioms described below are based on our expe-
rience at Google, they are typical for large-scale distributed systems, and pervasive in other platform-
as-a-service clouds.

Datacenters have bred a software architecture of distributed, multi-tiered services, where each in-
dividual service exposes a relatively narrow set of APIs.1 Communication between services happens
exclusively through remote procedure calls (RPCs) [45]. Requests and responses are serialized in a
common format (at Google, protocol buffers [46]). Latency, especially at the tail end of distributions,
is the defining performance metric, and a plethora of techniques aim to reduce it [34].

One of the main benefits of small services with narrow APIs is the relative ease of testability and
deployment. This encourages fast release cycles – in fact, many teams inside Google release weekly
or even daily. Nearly all of Google’s datacenter software is stored in a single shared repository, and
built by one single build system [43]. Consequently, code sharing is frequent, binaries are mostly
statically linked to avoid dynamic dependency issues. Through these transitive dependences, binaries
often reach 100s of MBs in size. Thus, datacenter CPUs are exposed to varied and diverse workloads,
with large instruction footprints, and shared low-level routines.

Continuous profiling We collect performance-related data from the many live datacenter work-
loads using Google-Wide-Profiling (GWP) [105]. GWP is based on the premise of low-overhead ran-
dom sampling, both of machines within the datacenter, and of execution time within a machine. It is
inspired by systems like DCPI [4].

In short, GWP collectors: (i) randomly select a small fraction of Google’s server fleet to profile
each day, (ii) trigger profile collection remotely on each machine-under-test for a brief period of time
(most often through perf [33]), (iii) symbolize the collected sample’s callstacks (such that they are

1Recently the term “microservices” [89] has been coined to describe such a system architecture. The concept
itself predates the term [93].

26

Binary Description
ads Content ad targeting – matches ads with web pages based on page contents.
bigtable Scalable, distributed, storage [23].
disk Low-level distributed storage driver.
flight-search Flight search and pricing engine.
gmail Gmail back-end server.
gmail-fe Gmail front-end server.
indexing1, in-
dexing2

Components of search indexing pipelines [9].

search1,
search2,
search3

Search leaf nodes [87].

video Video processing tasks: transcoding, feature extraction.

Table 3.1: Workload descripধons

tagged with corresponding code locations) and (iv) aggregate a large number of such samples from
many machines in a Dremel [88] database for easy analysis. The GWP collection pipeline has been
described in detail by Ren et al. [105].

GWP has been unobtrusively sampling Google’s fleet for several years, which makes it a perfect
vehicle for longitudinal studies that answer where cycles have been spent over large periods of time.
We perform several such studies with durations of 12-36 months in the following sections.

We focus these studies on code written in C++, because it is the dominant language that consumes
CPU cycles. This is not necessarily the case in terms of popularity. A large amount of code (measured
in lines-of-code) is written in other languages (mostly Java, Python and Go), however such code is
responsible for a small fractionof cycles overall. Focusing onC++also simplifies symbolizing callstacks
with each collected sample. The aggregated set of these symbolized callstacks enables analyses that
transcend application boundaries, and allows us to search for hotspots at true warehouse scale.

Architecture-specific collection To analyze more subtle interactions of warehouse-scale appli-
cations with the underlying hardware, we use processor performance counters that go beyond at-
tributing cycles to code regions. We reuse themajority ofGWP’s infrastructure to collect performance
counters and ask microarchitecture-specific questions. Since counters are intricately tied to a specific
microarchitecture, we limit such studies to machines with Intel Ivy Bridge processors.

In more detail, for each such dedicated collection, we randomly select ≈ 20, 000 Ivy Bridge ma-
chines, and profile all jobs running on them to gather 1-second samples of the respective performance
counters. For per-threadmeasurements, we also collect the appropriatemetadata to attribute the sam-

27

ples to the particular job executing the thread, and its respective binary (through perf’s container
group support). We also take special care to validate the performance counters that we use with mi-
crobenchmarks (errata inmore exotic performance counters can be common), and to only use counter
expressions that can fit constraints of a core’s performance monitoring unit (PMU) in a single mea-
surement (time-multiplexing the PMU often results in erroneous counter expressions). The last re-
quirement limits the analyses that we perform. A common practice for evaluating complex counter
expressions that do not fit a single PMU is to simply collect the necessary counters during multiple
runs of the same application. In a sampling scenario, this is not trivially applicable because different
parts of the counter expression can come from different samples, and would require special normal-
ization to be comparable to one another.

All expressions that we do collect in single-PMU chunks are ratios (normalized by cycles or instruc-
tions) and do not require such special treatment. Their individual samples can be compared against
each other and aggregated without any additional normalization. We typically show the distributions
of such samples, compressed in box plots. Boxes, drawn around the median value, represent the 25-th
and 75-th percentiles of such distributions, while whiskers (in the plots where shown) – the 10-th and
90-th.

Performance counter analysis We use a performance analysis methodology, called Top-Down,
recently proposed by Yasin [125]. Top-Down allows for reconstructing approximate CPI stacks in
modernout-of-order processors, a task considereddifficultwithout specializedhardware support [38].
The exact performance counter expressions that we use are identical with the ones listed in the Top-
Down work [125].

Similar to other cycle counting methodologies [16, 38], Top-Down calculates the cost of microar-
chitectural stall events in cycles, as opposed to inmore conventionalmetrics (e.g. miss rates, misses per
kilo-instruction – MPKI), quantifying the end cost in performance for such events. This is especially
important for modern complex out-of-order processors which have a wide range of latency hiding
mechanisms. For example, a high value for MPKI in the L1 instruction cache can raise a false alarm
for optimizing instruction footprint. In fact, a modern core’s front end has sufficient buffering, and
misses in the L1 alone cause very little end-performance impact.

Workloads While we do make the observation that workloads are getting increasingly diverse, we
focused on 12 binaries (Table 3.1) for in-depthmicroarchitectural analysis. Themain selection criterion
was diversity. Thus, we ended up with jobs from several broad application classes – batch (video,
indexing) vs. latency-conscious (the rest); low-level services (disk, bigtable) through back-ends

28

0 10 20 30 40 50
Binaries

0
20
40
60
80

100

Di
st

rib
ut

io
n

of
 c

yc
le

s
(C

DF
 %

)

Hottest: 9.9 %

Figure 3.1: There is no “killer applicaধon” to opধmize for. The top 50 hoħest binaries only cover≈60% of WSC
cycles.

A
u
g

Y1
N

ov
 Y

1
Fe

b
Y2

M
ay

 Y
2

Ju
l
Y2

O
ct

 Y
2

Ja
n
 Y

3
A
pr

 Y
3

Ju
l
Y3

S
ep

 Y
3

D
ec

 Y
3

M
ar

 Y
4

Ju
n
 Y

4
A
u
g

Y4

0

20

40

60

80

100

C
yc

le
s

in
5
0
 h

o
tt

es
t

b
in

ar
ie

s
(%

)

Trend: -4.97 % / year; R2 =0.67

Figure 3.2: Workloads are geষng more diverse. Fracধon of cycles spent in top 50 hoħest binaries is decreasing.

(gmail, search) to front-end servers (gmail-fe). We strived to include varied microarchitectural
behaviors – different degrees of data cache pressure, front-end bottlenecks, extracted IPC, etc. We also
report averages aggregated over a significantly larger number of binaries than the hand-picked 12.

Finally, wemake the simplifying assumption that one application equals one binary name (in other
words, one unique build target, potentiallywithmultiple deployed versions) anduse the two terms in-
terchangeably (Kambadur et al. [57] describe application delineation tradeoffs in a datacenter setting).
This has no impact on any results for the 12 workloads described above, because they are composed of
single binaries.

3.3 Workload diversity

The most apparent outcome of this study is the diversity of workloads in a modern warehouse-scale
computer. While WSCs were initially created with a “killer application” in mind [9], the model of
“the datacenter is the computer” has since grown and current datacenters handle a rapidly increasing
pool of applications.

To confirm this point, we performed a longitudinal study of applications running in Google’s

29

0 500 1000 1500 2000
Leaf functions

0
20
40
60
80

100

Di
st

rib
ut

io
n

of
 c

yc
le

s
(C

DF
 %

)

353

Figure 3.3: Individual binaries are already opধmized. Example binary without hotspots, and with a very flat execuধon
profile.

warehouse-scale computers over more than 3 years. Figure 3.1 shows the cumulative distribution of
CPU cycles among applications for the last week of the study. It is clear that no single application
dominates the distribution – the hottest one accounts for≈10% of cycles. Furthermore, it takes a tail
of 50 different applications to build up to 60% of cycles.

Figure 3.1 is just a single slice in time of an ongoing diversification trend. We demonstrate that in
Figure 3.2, which plots the fraction of CPU cycles spent in the 50 hottest binaries for each week of the
study. While at the earliest periods we examined, 50 applications were enough to account for 80% of
execution time, three years later, the same number (not necessarily the same binaries) cover less than
60% of cycles. On average, the coverage of the top 50 binaries has been decreasing by 5 percentage
points per year over a period of more than 3 years. Note that this data set does not include data re-
lated to public clouds, which give orders of magnitude more programmers access to warehouse-scale
resources, further increasing application diversity.

Applications exhibit diversity as well, having very flat execution profiles themselves. We illustrate
this point with a CPU profile from search3, aggregated over a week of execution on a typically-
sized cluster for that particular application. Figure 3.3 shows the distribution of CPU cycles over leaf
functions – the hottest single function is responsible for only 6.3% of cycles, and it takes 353 functions
to account for 80% of cycles. This tail-heavy behavior is in contrast with previous observations. For
example, another scale-out workload, Data analytics fromCloudSuite has been shown to contain
significant hotspots – with 3 functions responsible for 65% of execution time [126].

From a software engineer’s perspective, the absence of immediately apparent hotspots, both on the
application and function levels, implies there is no substitute for datacenter-wide profiling. While
there is value in optimizing hotspots on a per-application basis, the engineering costs associated with
optimizing flat profiles are not always justified. This has driven Google to increasingly invest effort
in automated, compiler-driven feedback-directed optimization [27]. Nevertheless, targeting the right
common building blocks across applications can have significantly larger impact across the datacenter.

30

From an architect’s point of view, it is similarly unlikely to find a single bottleneck for such a large
amount of codes. Instead, in the rest of this chapter, after aggregating over many thousands of ma-
chines running these workloads, we point out several smaller-scale bottlenecks. We then tie them back
to suggestions for designing future WSC server systems.

3.4 Datacenter tax

Despite the significant workload diversity shown in Section 3.3, we see common building blocks once
we aggregate sampled profile data across many applications running in a datacenter. In this section,
we quantify the performance impact of the datacenter tax, and argue that its components are prime
candidates for hardware acceleration in future datacenter SoCs.

We identify six components of this tax, detailed below, and estimate their contributions to all cycles
in ourWSCs. Figure 3.4 shows the results of this characterization over 11 months – “tax cycles” consis-
tently comprise 22-27% of all execution. In a world of a growing number of applications (Figure 3.2),
optimizing such inter-application common building blocks can lead to significant performance gains,
more so than hunting for hotspots in individual binaries. We have observed services that spend virtu-
ally all their time paying tax, and would benefit disproportionately from reducing it.

The components thatwe included in the tax classification are: protocol buffermanagement, remote
procedure calls (RPCs), hashing, compression, memory allocation and data movement. In order to
cleanly attribute samples between themwe only use leaf execution profiles (binning based on program
counters, and not full call stacks). With leaf profiles, if the sample occurs in malloc() on behalf of
RPC calls, that sample will be attributed to memory allocation, and not to RPC. This also guarantees
that we always under-estimate the fraction of cycles spent in tax code.

While someportions of the tax aremore specific toWSCs (protobufs andRPCs), the rest are general
enough to be used in various kinds of computation. When selecting which inter-application building
blocks to classify as tax, we opted for generally mature low-level routines, that are also relatively small
and self-contained. Such small, slowly-changing, widely-used routines are a great match for hardware
specialization. In the following paragraphs, we sketch out possible directions for accelerating each tax
component.

Protobuf management Protocol buffers [46] are the lingua franca for data storage and transport
inside Google. One of the the most common idioms in code that targets WSCs is serializing data
to a protocol buffer, executing a remote procedure call while passing the serialized protocol buffer
to the remote callee, and getting a similarly serialized response back that needs deserialization. The

31

Ja
n
 Y

1

Fe
b

Y1

M
ar

 Y
1

A
pr

 Y
1

M
ay

 Y
1

Ju
n
 Y

1

Ju
l
Y1

A
u
g

Y1

S
ep

 Y
1

O
ct

 Y
1

N
ov

 Y
1

0
5

10
15
20
25
30
35

C
yc

le
s

in
 t

ax
 c

o
d
e

(%
)

compression

allocation

hash
protobuf
rpc
memmove

Figure 3.4: 22-27% of WSC cycles are spent in different components of “datacenter tax”.

serialization/deserialization code in such a flow is generated automatically by the protobuf compiler,
so that the programmer can interact with native classes in their language of choice. Generated code is
the majority of the protobuf portion in Figure 3.4.

The widespread use of protocol buffers is in part due to the encoding format’s stability over time.
Its maturity also implies that building dedicated hardware for protobuf (de)serialization in a server
SoC can be successful, similarly to XML parsing accelerators [31, 118]. Like other data-intensive accel-
erators [66], suchdedicated protobuf hardware should probably reside closer tomemory and last-level
caches, and get its benefits from doing computation close to memory.

Remote procedure calls (RPCs) RPCs are ubiquitous inWSCs. RPC libraries perform a variety
of functions, such as loadbalancing, encryption, and failure detection. In our tax breakdown, these are
collectively responsible for approximately a third of RPC tax cycles. The rest are taken up by simple
data movement of the payloads. Generic data movement accelerators have been proposed [35] and
would be beneficial for the latter portion.

Data movement In fact, RPCs are by far not the only code portions that do data movement. We
also tracked all calls to thememcpy() andmemmove() library functions to estimate the amount of time
spent on explicit data movement (i.e., exposed through a simple API). This is a conservative estimate
because it does not track inlined or explicit copies. Just the variants of these two library functions
represent 4-5%of datacenter cycles. Recentwork inperformingdatamovement inDRAM[108] could
optimize away this piece of tax.

32

Ja
n
 Y

1

Fe
b

Y1

M
ar

 Y
1

A
pr

 Y
1

M
ay

 Y
1

Ju
n
 Y

1

Ju
l
Y1

A
u
g

Y1

S
ep

 Y
1

O
ct

 Y
1

N
ov

 Y
1

0
5

10
15
20
25
30
35

C
yc

le
s

in
 k

er
n
el

 c
o
d
e

(%
)

kernel

kernel/sched

Figure 3.5: Kernel ধme, especially ধme spent in the scheduler, is a significant fracধon of WSC cycles.

Compression Approximately one quarter of all tax cycles are spent compressing and decompress-
ing data.2 Compression is spread across several different algorithms, each of which stresses a different
point in the compression ratio/speed spectrum. This need not be the case for potential hardware-
accelerated compression. For example, the snappy algorithm was designed specifically to achieve
higher (de)compression speeds than gzip, sacrificing compression ratios in the process. Its usage
might decrease in the presence of sufficiently fast hardware for better-compressing algorithms [72, 90].

Memory allocation Memory allocation and deallocation make up a substantial component of
WSC computation (as seen by allocation in Figure 3.4), despite significant efforts in optimizing
them in software [41, 69]. Current software implementations aremostly based on recursive data struc-
tures, and interact with the operating system, which makes them non-trivial to implement in hard-
ware. However, the potential benefits suggest that an investigation in this direction is worthwhile.
Chapter 5 is one such investigation.

Hashing We also included several hashing algorithms in our definition of tax cycles to estimate the
potential for cryptography accelerators. Hashing represents a small, but consistent fraction of server
cycles. Due to the large variety of hashes in use, this is a conservative estimate.

Kernel The kernel as a shared workload component deserves additional mention. It is obviously
ubiquitous, and it is not surprising that WSC applications spend almost a fifth of their CPU cycles in
the kernel (Figure 3.5). However, we do not consider it acceleratable tax – it is neither small, nor self-
contained, and certainly not easy to replacewith hardware. This is not to say it would not be beneficial
to further optimize it in software. As an example, consider the scheduler in Figure 3.5, whichhas to deal

2We only include general-purpose lossless compression in this category, not audio/video coding.

33

withmany diverse applications, eachwith evenmore concurrent threads (a 90-th percentilemachine is
running about 4500 threads concurrently [131]). Even after extensive tuning [119], the scheduler alone
accounts for more than 5% of all datacenter cycles.

3.5 Microarchitecture analysis

Similar to the smaller components of the “datacenter tax” that together form a large fraction of all
cycles, we expect multiple performance bottlenecks on the microarchitectural level. In order to easily
identify them,weuse theTop-Down [125] performance analysismethodology, whichwe incorporated
in our fleet measurement infrastructure.

Top-Down chooses the micro-op (μop) queue of a modern out-of-order processor as a dividing
point between a core’s front-end and back-end, and uses it to classify μop pipeline slots (i.e. po-
tentially committed μops) in four broad categories: Retiring, Front-end bound, Bad specu-
lation, Back-end bound. Out of these, only Retiring classifies as “useful work” – the rest are
sources of overhead that prevent the workload from utilizing the full core width.

Because of this single point of division the different components of this overhead are additive, very
much like the components of a traditional CPI stack. The detailed methodology recursively breaks
each overhead category into more concrete subcategories (e.g., Back-end bound into Core-bound,
L1-bound, etc.), driving profiling in the direction of increasingly specific microarchitectural bottle-
necks. Wemostly focus on the top-level breakdown and several of its direct descendants – deeper sub-
categories require more complex counter expressions that are harder to collect accurately in sampled
execution, as described in Section 3.2.

Thebreakdown in the four top categories canbe summarized in a simpledecision tree. If aμop leaves
the μop queue, its slot can be classified as either Retiring or Bad speculation, depending on
whether itmakes it through to the commit stage. Similarly, if aμop-queue slot does not become empty
in a particular cycle, there can be two reasons: it was either empty to begin with (Front-end bound),
or the back-end was not ready for another μop (Back-end bound). These can be distinguished sim-
ply by a back-end stall signal. Intuitively, Front-end bound captures all overheads associated with
fetching, instruction caches, decoding and some shorter-penalty front-end resteers, while Back-end
bound is composed of overheads due to the data cache hierarchy and the lack of instruction-level par-
allelism.

We apply this approach to the overheads of datacenter workloads in Figure 3.6. It includes several
SPECCPU2006 benchmarkswithwell-knownbehaviors as reference points: 400.perlbench–high
IPC, largest i-cacheworking set; 445.gobmk–hard-to-predict branches, highest IL1MPKI;429.mcf,

34

0 20 40 60 80 100 120
Pipeline slot breakdown (%)

433.milc
471.omnetpp

429.mcf
445.gobmk

400.perlbench

video
search3
search2
search1

indexing2
indexing1

gmail-fe
gmail

flight-search
disk

bigtable
ads

Retiring
Front-end bound

Bad speculation
Back-end bound

Figure 3.6: Top-level boħleneck breakdown. SPEC CPU2006 benchmarks do not exhibit the combinaধon of low
reধrement rates and high front-end boundedness of WSC ones.

471.omnetpp – memory-bound, stressing memory latency; 433.milc – memory-bound, stressing
memory bandwidth.

The first immediate observation from Figure 3.6 is the small fraction of Retiring μops– similar,
or often lower, than the lowest seen in SPEC (429.mcf). This implies thatmost datacenter workloads
spend cores’ time stalled on various bottlenecks. The majority of these stall slots are clearly due to
back-end pressures – except for search2 and search3, more than 60% of μop slots are held up due
to the back-end. Wewill examine thesemore closely in Section 3.7. Bad speculation slots arewithin
the range defined by the SPEC suite. Examining more closely, the 12 WSC applications show branch
misprediction rates in a wide range from 0.5× to 2× those of 445.gobmk and 473.astar, with the
rest of SPEC below the lower bound of that interval.

Finally, one type of behavior that clearly stands out in comparison with SPEC benchmarks is the
large fraction of stalls due to front-end pressure. We investigate them in the next section.

3.6 Instruction cache bottlenecks

The Top-Down cycle breakdown shown in Figure 3.6 suggests that WSC applications spend a large
portion of time stalled in the front-end. Indeed, Front-end waste execution slots are in the 15-30%
range across the board (most often 2− 3× higher than those in typical SPEC benchmarks). Note that
these indicate instructions under-supplied by the front-end – after the back-end has indicated it is able

35

0 2 4 6 8 10 12
Fetch latency cycles (%)

video
search3
search2
search1

indexing2
indexing1

gmail-fe
gmail

flight-search
disk

bigtable
ads

Figure 3.7: Cycles completely starved on front-end boħlenecks account for more than 5% of execuধon.

to accept more. We trace these to predominantly instruction cache problems, due to lots of lukewarm
code. Finally, extrapolating i-cache working set trends from historical data, we see alarming growth
rates for some applications that need to be addressed.

For a more detailed understanding of the reasons for front-end stalls, we first measure front-end
starvation cycles – those when the μop queue is delivering 0 μops to the back-end. Figure 3.7 shows
them to typically exceed 5% of all cycles. This is especially significant in the presence of deep (40+
instructions) front-end buffers, which absorbminor fetch bubbles. Themost probable cause is a non-
negligible fraction of long-latency instruction miss events – most likely instruction misses in the L2
cache.

Such a hypothesis is confirmed by the high exhibited L2 instruction miss rates from Figure 3.8.
WSC applications typically miss in the range of 5-20 MPKI, an order of magnitude more frequently
than theworst cases in SPECCPU2006, and, at the high end of that interval, 50% higher than the rates
measured for the scale-out workloads of CloudSuite [39].

The main reason for such high miss rates is simply the large code footprint of WSC applications.
Binaries of 100s of MB are common and, as seen in Section 3.3, without significant hotspots. Thus,
instruction caches have to deal with large code working sets – lots of “lukewarm instructions”. This
is made worse in the L2 cache, where instructions have to compete for cache capacity with the data
stream, which typically also has a large working set.

There are several possible directions for architects to address instruction cache bottlenecks. Larger
instruction caches are an obvious one, although higher capacity has to be balanced with increased
latency and die constraints. More complex instruction prefetchers are another, which have been suc-
cessful for private i-caches under non-trivial instruction miss rates [5, 64]. Finally, cache partitioning
is another alternative, especially in light of high miss rates in the L2 and lukewarm code. While parti-
tioning has been extensively studied formultiple applications’ access streams in shared last-level caches

36

0 5 10 15 20 25 30
L2 cache instruction MPKI

433.milc
471.omnetpp

429.mcf
445.gobmk

400.perlbench

video
search3
search2
search1

indexing2
indexing1

gmail-fe
gmail

flight-search
disk

bigtable
ads

Figure 3.8: Instrucধon misses in the L2 cache are usually high.

(Qureshi and Patt [99], among many others), relatively little attention has been paid to treating the
instruction and data streams differently, especially in private, mid-level caches. Recently, Jaleel et al.
proposedmodifying replacement policies to prioritize code over data [54], and the SPARCM7design
team opted for an architecture with completely separate L2 instruction and data caches [72].

A problem in the making Large instruction working sets are a widespread and growing issue. To
demonstrate that, we use profiling data to estimate i-cache footprints of datacenter binaries over a
period of 30 months. For some applications, such estimates grow by more than 25% year-over-year,
significantly out-pacing i-cache size growth.

The canonical method to estimate a workload’s working set size is simulation-based. It involves
simply sweeping the cache size in a simulator, and looking for the “kneeof the curve”– the size atwhich
the miss rate drops to near zero. This is cumbersome, especially if performed over a large number of
versions of the same binary to capture a growth trend. Instead, we developed a different, non-invasive
approach to estimate it.

With only profiling data available, one can use unordered instruction pointer samples, andmeasure
howmany unique cache lines cover a large fraction (e.g. 99%) of all samples, when ranked by hotness.
The rationale behind such a metric is that an infinite-size cache would obviously contain all unique
lines. In a limited-size one, over a large enough time window, the LRU replacement policy eventually
kicks out less frequently-used lines, until the hottest lines are left.

However, such a strategy is contingent on consistent sampling over time. In a long-term historical
study, both the fraction of machines that get profiled and the amount of machines serving the same
application can vary significantly, often in ways that are hard to control for. Under such variance,

37

Ju
l Y

1

Oc
t Y

1

Ja
n

Y2

Ap
r Y

2

Ju
n

Y2

Se
p

Y2

De
c

Y2

M
ar

 Y
3

M
ay

 Y
3

Au
g

Y3

No
v

Y3

0
10
20
30
40
50

#
 u

ni
qu

e
ic

ac
he

 li
ne

s
in

 1
M

 s
am

pl
es

 (K
)

Growth: 27.77 % / year; R2 =0.66

400.perlbench

search2

Ju
l Y

1

Oc
t Y

1

Ja
n

Y2

Ap
r Y

2

Ju
n

Y2

Se
p

Y2

De
c

Y2

M
ar

 Y
3

M
ay

 Y
3

Au
g

Y3

No
v

Y3

0
10
20
30
40
50

#
 u

ni
qu

e
ic

ac
he

 li
ne

s
in

 1
M

 s
am

pl
es

 (K
)

Growth: 3.23 % / year; R2 =0.16

400.perlbench

bigtable

Figure 3.9: Large instrucধon cache footprints. Geষng progressively larger for some applicaধons.

it is unfair to compare the absolute number of cache lines that cover a fixed fraction of samples for
two time periods – 99% of 10×more samples are more likely to capture larger portions of the tail of
instruction cache lines.

We compensate with yet another layer of sampling. For a particular binary version, we select a fixed
number of random samples in post-processing a week’s worth of data (in results shown below, this
number is 1 million), and count the absolute number of unique cache lines that cover that new sample
set. This is the equivalent of constructing a hotness ranking with a stable number of samples across
measurement periods.

Figure 3.9 shows the results of applying this approach to 30months of instruction pointer samples.
It plots our estimate of the instruction cacheworking set size – the number of unique cache lines in 1M
randomly-selected weekly samples for a specific binary. For calibration, we include 400.perlbench,
which has the largest measured i-cache working set in SPEC CPU2006 (≈172 KB) [53].

First, compared to SPEC, all workloads demonstrated several fold larger i-cache working sets. Fig-
ure 3.9 illustrates that forsearch2 andbigtable– their i-cache footprints are 4× those of400.perl-
bench, which amounts to688KBormore. Note that such a size is significantly larger than theL2 cache
in current architectures (Intel: 256 KB, AMD: 512 KB, IBM: 512 KB), which also has to be shared with
the data stream.

38

More importantly, this estimate is growing over time, at alarming rates for some applications. Con-
sider search2 in Figure 3.9, whose footprint has almost doubled during the duration of the study, at
27% per year. Other workloads are more stable – for example, bigtable only sees a 3% year-to-year
growth.

While the exact reasons for this disparity are unclear, we hypothesize it is related to development
velocity. Products like search are under constant development, and often see a variety of new features
added, which leads to simply more code. bigtable, on the other hand, is a relatively mature code
base with a well-defined feature set that sees less development. Amore quantitative study, correlating
development speed with instruction footprint would make for interesting future work.

3.7 Core back-end behavior: dependent accesses

While the negative impact of large instruction working sets is likely to continue growing, the current
dominant source of overhead identified by the Top-Down decomposition (Figure 3.6) is clearly in the
core’s back-end.

Overall, the combined influence of a large amount of front-end and back-end stalls results in very
few instructions per cycle (IPC) on average (Figure 3.10) – almost 2x lower than the SPECint ge-
omean and close to that of the most memory-bound benchmarks in SPEC (429.mcf, 471.omnetpp,
433.milc). This result is in line with published data on classical datacenter workloads [55], and has
led researchers to investigate the potential of small cores for warehouse-scale applications [3, 55, 76].
We show a more nuanced picture, with bimodal extracted ILP, frequently low, but also with periods
of more intense computation.

As a reminder, there are two very broad reasons for Back-end boundμop slots: time spent serving
data cache requests, and lack of instruction-level parallelism (ILP). Of the two, data cache behavior is
the dominant factor in our measurements. This is somewhat unsurprising, given the data-intensive
nature ofWSCworkloads. Figure 3.11 serves as confirmation, showing the amount of back-end cycles,
stalled due to pending loads in the cache hierarchy, or due to insufficient store buffer capacity. At 50-
60% of all cycles, they account for more than 80% of Back-end bound pipeline slots shown earlier
(Figure 3.6).

However, not all cycles are spent waiting on data caches. We demonstrate this in Figure 3.12, which
measures the distributionof extracted ILP. By extracted ILP,we refer to the number of simultaneously
executing μops at each cycle when some μops are issued from the out-of-order scheduler to execution
units. We see that 72% of execution cycles exhibit low ILP (1 or 2 on a 6-wide Ivy Bridge core), consis-
tent with the fact that the majority of cycles are spent waiting on caches. However, for the other 28%

39

0.0 0.5 1.0 1.5 2.0 2.5
Instructions per cycle (IPC)

433.milc
471.omnetpp

429.mcf
445.gobmk

400.perlbench

video
search3
search2
search1

indexing2
indexing1

gmail-fe
gmail

flight-search
disk

bigtable
ads

Figure 3.10: IPC is universally low.

0 10 20 30 40 50 60 70 80
Cache-bound cycles (%)

video
search3
search2
search1

indexing2
indexing1

gmail-fe
gmail

flight-search
disk

bigtable
ads

Figure 3.11: Half of cycles are spent stalled on caches.

of cycles, 3 or more functional units are kept busy each cycle.
One explanation consistent with such behavior is thatWSC applications exhibit a fine-grainedmix

of dependent cache accesses and bursty computation. The bursts of computation can either be de-
pendent on the cache references, or independent and extractable as ILP. The difference between these
two variants – whether intense compute phases are on the critical path of execution – could be detri-
mental for the amount of end performance degradation of “wimpier” cores, and requires a dedicated
simulation study.

Memory bandwidth utilization Notice that in the previous paragraph, we immediately diagnose
dependent cache accesses. We hypothesize this because of the very lowmemory bandwidth utilization
thatwe observed, shown in Figure 3.13. The plot is a cumulative histogramofmeasuredDRAMband-

40

[1,2] [3,4] [5,6]
0

33

67

100

Cy
cl

es
 w

ith
 e

xt
ra

ct
ed

 IL
P

(%
)

Figure 3.12: Extracted ILP. 28% of cycles uধlize 3 or more execuধon ports on a 6-wide machine.

0 20 40 60 80 100
Samples (%)

0
10
20
30
40
50
60
70

Di
st

rib
ut

io
n

of

ba
nd

w
id

th
 (C

DF
 %

)

95 %

31%

Figure 3.13: Memory bandwidth uধlizaধon is universally low.

width across a sufficiently large number of machines.3 The 95-th percentile of utilization is at 31%, and
themaximummeasured – 68%, with a heavy tail at the last percentile. Some portion of the low band-
width usage is certainly due to low CPU utilization. However this is not a sufficient explanation –
Barroso et al. show median CPU utilization in the 40%–70% range (depending on the type of clus-
ter) [8], while we measure a significantly lower median bandwidth utilization at 10%. Note that the
low bandwidth requirement is not very different from measurements on CloudSuite [39] and other
emerging datacenter workloads [82].

One consequence of the low bandwidth utilization is that memory latency is more important than
bandwidth for the set of the applications running in today’s datacenters. In light ofWSC server design,
this might pose tradeoffs between memory bandwidth (or then number of memory controllers) and
other uses of freed up silicon area (for example, more cores or accelerators).

Note that the large amount of unused bandwidth is also contrary to some typical benchmarking
practices that focus on capacity. For example, SPECrate as commonly run (N copies on N cores) can

3Measured through the sum of the UNC_M_CAS_COUNT:RD and UNC_M_CAS_COUNT:WR IvyTown uncore
performance counters.

41

shift several benchmarks’ memory bottlenecks from latency to bandwidth [125], causing architects to
optimize for a less relevant target.

3.8 Simultaneous multi-threading

Themicroarchitectural results shown so far did not account for simultaneousmulti-threading (SMT),
even though it is enabled on the Ivy Bridge machines profiled. For example, the top-level cycle break-
down in Figure 3.6 was done on a per-hyperthread basis, assuming each hyperthread has the full ma-
chine width to issue μops.

Broadly speaking, SMT is most efficient when workloads have different performance bottlenecks,
and multiple threads can complement each other’s deficiencies. WSC applications, with inefficiencies
in both the front-end and the back-end, as well as suspected fine-grained phase behavior, fit such a
description well, and we expect them to benefit from SMT.

Whilewe cannotperformat-scalemeasurements of counterfactualswithoutdisturbing a largenum-
ber of user-facing services (i.e., disabling SMT and looking at workload performance), we can at least
estimate the efficacy of SMT by comparing specific per-hyperthread performance counters with ones
aggregated on a per-core basis. Note that this is very different from measuring the speedup that a sin-
gle application experiences from SMT. When a thread is co-run on a core, its performance naturally
drops compared to when it has the full core available – mostly due to capacity effects, i.e. having to
sharemicroarchitectural units and caches. On the other hand, core utilization increases simply because
multiple threads share it. While we cannot measure the first effect at-scale without turning SMT off,
we can and do measure the latter.

As expected, functional unit utilization in the back-end increases when accounting for SMT. The
first plot in Figure 3.14 shows that 3 or more of the 6 execution ports are used during 34% of cycles
when counting both hyperthreads, as opposed to 28% in Figure 3.12, when counting each hyperthread
separately.

While such improvements from SMT are expected and well-understood, the effects on front-end
performance are less clear. On the one hand, SMT can increase instruction cache pressure – more
instructions need to be fetched, even if hyperthreads share the same code, exacerbating an already
severe instruction cache capacity bottleneck (Section 3.6). On the other, long-latency fetch bubbles
on one hyperthread can be absorbed by fetching from another.

Our profiling data suggests that the latter effect dominates inWSC applications and SMT ends up
improving front-end utilization. This is evident from the second and third plots of Figure 3.14. Per-
core Front-end bound cycles are significantly lower than when measured per-hyperthread – 16%

42

[1,2] [3,4] [5,6]
0

33

67

100

Cy
cl

es
 w

ith
 e

xt
ra

ct
ed

 IL
P

(%
)

0 10 20 30 40 50
Front-end bound cycles (%)

per-core
per-thread

0 2 4 6 8 10 12
Fetch latency cycles (%)

per-core
per-thread

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Instructions per cycle (IPC)

per-core
per-thread

Figure 3.14: SMT effects on architectural behavior. From top to boħom: (i) more ILP extracted compared to Fig-
ure 3.12; (ii) front-end bound cycles decrease, but (iii) instrucধon starvaধon sধll exists; (iv) core throughput doubles
with two hyperthreads.

versus 22% on the medians, with drastically tighter distributions around them. Front-end starvation
cycles (with no μops dispatched) also decrease from 5% to 4%, indicating that long-latency instruction
cache misses are better absorbed, and SMT succeeds in alleviating some front-end inefficiencies.

Note however, that, even after we account for 2-wide SMT, 75% of collected fleet samples show
an IPC value of 1.2 or less (last plot of Figure 3.14), compared to a theoretical machine width of 4.0.
Adding this to the fact that latency bottlenecks (both due to fetching instructions from the L3 cache,
and fetching data from main memory) are still far from eliminated suggests potential for wider SMT:
with more threads per core, as seen in some server chips [72]. This case is strengthened by the low
memory bandwidth utilization shown earlier – evenwithmore threads per core bandwidth is unlikely
to become a bottleneck. These results warrant further study of balancing the benefits of wider SMT
with the potential costs, both in performance from potentially hitting capacity bottlenecks, and in
power from the duplication or partitioning of core resources.

43

3.9 Related work

In recent years, research interest in developing new architectural support for datacenters has increased
significantly. The concept of deploying “wimpy cores” or microservers to optimize datacenters has
been well-explored [3, 55, 76], and recent efforts have investigated specialized interconnects [79] and
customized hardware accelerators [97]. While our cycle breakdown finds opportunities for special-
ization, microarchitectural analysis suggests that “brawny” out-of-order superscalar cores provide suf-
ficient performance to be justified, especially when coupled with wide SMT. As prior research has
observed, “wimpy” cores and some forms of specialization excel in cost- and power-efficiency, often at
the cost of performance.

Architecture research in datacenter processor design has spurred multiple academic efforts to de-
velop benchmark suites for datacenter computing. Most notably, CloudSuite is a mixture of scale-out
cloud service workloads, characterized on a modern server system [39]. Recent efforts have provided
in-depth microarchitectural characterization of portions of CloudSuite [126]. Some of our findings
(very low bandwidth utilization) are well-represented in CloudSuite benchmarks, others – to a lesser
extent (large i-cache pressure), while yet others are markedly different (very flat execution profiles ver-
sus hotspots). Many follow-up architectural studies unjustly focus only on the Web Search portion
of CloudSuite. This can lead to false conclusions, because: (i) websearch is not the sole “killer work-
load” in the datacenter; and (ii) CloudSuite Web Search is the least correlatedwith our findings from
a live WSC (it sees very low stall times, has a tiny L2 instruction working set, and, as a result, achieves
very high IPC more representative of a compute-bound workload [39]). Similarly, DCBench focuses
in more depth on cloud data analytics [56]. These suites are vital for experimentation, though they
cannot be as comprehensive as observing production applications evolve at scale over the years.

Other researchers have also taken the approach of profiling live datacenters. Kozyrakis et al. present
data on internet-scale workloads from Microsoft – Hotmail, Cosmos, and Bing, but their study fo-
cuses more on system-level Amdahl ratios rather than microarchitectural implications [65]. Another
paper [9] similarly focuses on system issues for Google websearch. While it has some discussion of
microarchitecture, this study is now more than a decade old. A large body of work profiles produc-
tion warehouse-scale applications with the explicit purpose of measuring [57] and reducing [85, 131]
contention between co-scheduled jobs, or of scheduling them in accordance with machine character-
istics [84]. Such studies can benefit from microarchitectural insights provided here.

Finally, our work builds on top of existing efforts to profile and analyze applications on modern
hardware. Google-Wide-Profiling provides low-overhead performance sampling across Google’s dat-
acenter fleet and has been deployed for many years to provide the capability for longitudinal stud-

44

ies [105]. We also leverage recent advances in Top-Down performance analysis [125] that allow us to
estimate CPI stacks without specialized hardware support [38].

3.10 Conclusions

Tobetter understand datacenter software performance properties, we profiled awarehouse-scale com-
puter over a period of several years. We showed detailed microarchitectural measurements spanning
tens of thousands of machines, running thousands of different applications, while executing the re-
quests of billions of users.

These workloads demonstrate significant diversity, both in terms of the applications themselves,
and within each individual one. By profiling across binaries, we found common low-level functions
(“datacenter tax”), which show potential for specialized hardware in a future server SoC. Finally, at
the microarchitectural level, we identified a common signature forWSC applications – low IPC, large
instruction footprints, bimodal ILP and a preference for latency over bandwidth – which should in-
fluence future processor designs for the datacenter. These observations motivate several interesting
directions for future warehouse-scale computers. The table below briefly summarizes our findings
and potential implications for architecture design.

Finding Investigation direction
workload diversity Profiling across applications.
flat profiles Optimize low-level system functions.
datacenter tax Datacenter specific SoCs

(protobuf, RPC, compression HW).
large (growing) i-cache footprints I-prefetchers, i/d-cache partitioning.
bimodal ILP Not too “wimpy” cores.
low bandwidth utilization Trade off memory bandwidth for cores.

Do not use SPECrate.
latency-bound performance Wider SMT.

Summary of findings and suggesধons for future invesধgaধon.

45

4
XIOSim:

a rich extensible user-level x86 simulator

While large-scale profiling studies allow us to get a broad picture of datacenter workloads, specific
hardware changes stil need to be evaluated on a case-by-case basis. Because of the extremely high costs
of chip design, virtually every architectural change is first prototyped in higher-level simulationmodels
before silicon. These models are evaluated on three main dimensions – speed, accuracy and flexibility.
Speed is both self-explanatory and easy to quantify. Usually, the more details that a model has, the
slower it runs. Accuracy refers to the prediction error of the simulator versus the eventual chip it
models. In practice, many new architecture proposals are incremental changes to an existing chip,
so accuracy is evaluated in how well a baseline model matches with existing measured performance.
Finally, flexibility refers to the (lack of) specificity of the performance model and its ability to predict
performance of a wide range of designs. These three metrics are often in contention and architecture
simulators tend to satisfy at most two.

We present XIOSim, a general-purpose x86 performance model that explicitly targets the accuracy
and flexibility corners of this space. XIOSim is under a BSD license and is developed in the open at
http://xiosim.org. XIOSim has very detailed cycle-by-cycle models of many architectural com-
ponents that can be combined into many flavors of homogeneous and heterogeneous processors. It
achieves simulation errors below 12%, for many workloads significantly so. It runs at 100-500 kilo-
instructions per second (KIPS) for single-core simulations, and maintains similar per-core speeds up

46

http://xiosim.org

to 8 simulated cores. In the rest of this chapter, we outline some of the main features of XIOSim that
distinguish it from other publicly available models. We focus mostly on its co-simulation execution
model and the efforts spent in validation, since validation has taken up the majority of development
time. We finally showcase XIOSim with a case study of HELIX-RC – a co-designed system with a
parallelizing compiler and a specialized core-to-core communication fabric – in order to demonstrate
the types of studies enabled by a flexible cycle-by-cycle simulator.

4.1 Why another simulator?

The XIOSim project started in 2009, when the landscape of publicly available microarchitecture sim-
ulators was a lot different than at the time of writing of this document. SimpleScalar [15] had been
the de facto model of choice for more than a decade. However, it lacked x86 support, and cross-
compiling for the SimpleScalar instruction was forcing researchers to older and increasingly less sup-
ported toolchains. PTLSim [127] did support x86, with detailed core and uncoremodels. However, it
was geared towards full system simulation, which is often too heavy and inflexible for CPU-intensive
workloads that spend most of their execution time in user space. To fill the niche of user-level, highly
detailed x86 models, Zesto [78] had just been released. However, support and further development
of Zesto stopped almost immediately after the release.

The initial motivation behind XIOSimwas to add aggressive in-order x86 core models to the exist-
ing rich out-of-order model in Zesto. With the rise of both mobile and datacenter computing in the
late 2000s, simpler cores appeared to be making a comeback, especially when in large numbers, but
there were no models for them. Available in-order simulators were targeted towards the extremely
simplistic 1-way several-stage cores found in micro-controllers [30]. In contrast, XIOSim started as a
model for the Intel Atom, an aggressive 2-way 15-stage in-order core, which sharedmanymore charac-
teristicswith larger out-of-order x86 cores thanwithmicro-controller-grade ones. Gradually, the focus
inXIOSim development shifted away from just anAtommodel towards a comprehensive framework
that allows mixing many different types of x86 cores and uncores, with as rich and customizable com-
ponent models as possible.

XIOSim maintains all models for microarchitectural structures described in the Zesto paper [78],
though they are typically just some of the available options. In addition, there are new models for:
Atom-like cores, 1-IPC cores, power consumption, cache controllers and coherency, cache structure re-
implementations, load and store queue re-implementations, interconnects, vector units (SSE/AVX),
synchronizationoperations (fences and atomics), a robust x86decoder, amicro-op cracker, newmicro-
op fusion modes, macro-op fusion, a stack engine, move elimination, additional prefetchers, addi-

47

tional branch predictor components, voltage and clock domains, dynamic voltage and frequency scal-
ing, among others.

In addition, XIOSim implemented a new co-simulation execution model with a user-space vir-
tual machine acting as a functional simulator, which allows it to handle workloads significantly more
complex than those handled by traditional user-level emulation-based simulators. A large number
of features are enabled (or required) by this model. These include: a thread scheduler, multi-process
simulation, a process core allocator (with several allocation algorithms), shadow virtualmemory, host-
speed fast-forwarding, along with several options for region-of-interest simulation (SimPoints, hook-
based, instruction-count-based). The full implementation of this execution model is probably the
most innovative feature of XIOSim, and we will discuss it in more detail in the following section.

Over several years of simulations, XIOSim has accrued several high-level APIs for typical simula-
tion tasks. These are as simple to use as changing a configuration flag, and include: simulated time
profiling, simulated sampling performance counters, instruction histograms, full microarchitectural
event tracing, ignoring functions / specific instructions in simulated execution (for limit studies of
performance gains), replacing functions / specific instructions either with fixed-latency “magic” in-
structions (for quickly evaluating the feasibility of acceleration), or with hand-encoded instruction
sequences (for more detailed acceleration studies).

XIOSim’s detailed and flexible models are very suitable for microarchitectural studies, where the
cycle-by-cycle interactions between subcomponents are crucial. This is in contrast to newer simula-
tors [20, 107] which raise the level of abstraction, achieving impressive gains in simulation speed, but
sometimes at the cost of precision or flexibility in the types of components they can model. XIOSim
keeps the level of detail of rich and heavy simulators, but its execution model allows rich simulation
of workloads that were previously out of reach for them. In addition, a long list of performance op-
timizations have made sure that XIOSim performance is better than traditionally expected from rich
simulation – typically around 5× slower than higher-level models like Sniper, but 10× faster than
detailed models like Zesto.

4.2 Execution model

Asmany simulators before it, XIOSim implements a decoupled simulationmodel, with separate func-
tional and timing simulators, responsible respectively for (i) the correct execution of the simulated
programs, and (ii) their predicted performance on the simulated machine (this model is also know as
execute-at-fetch). XIOSim extended this model by using a user-level virtual machine as the functional
model. It is also the only simulator to do so in all cases, including speculative execution. The rest of

48

this section goes into detail about this execution model.
In early simulators, such as SimpleScalar and Zesto, the functional model was based on emulation,

with an explicit representation of the simulated machine’s architectural state in the simulator itself
(especially registers, memory was usually at least partially shared with simulated processes because of
the high cost of complete duplication). Such a simulator architecturemakesmany tasks relatively easy:
for example, undoingmis-speculated instructions is done by simply running the emulator “in reverse”
on the latest state representation. However, it puts enormous strain on the emulator. Because the
program is effectively run on the emulated state, the emulator has to diligently and correctly support
every single instruction in the instruction set simply for correctness. This is especially cumbersome
for legacy instruction sets like x86, where whole classes of instructions (x87) and modes of operation
(16-bit) are largely irrelevant for performance, but occur in initialization code just enough to corrupt
the simulated machine’s state, if not handled appropriately. In user-level simulators, this problem
gets an additional dimension – the emulator can skip all system-level instructions (and many details
like control registers), which simplifies implementation, but it is now responsible for emulating the
effects of every single system call (and its parameters) on the simulated state, which erases many of
the simplicity gains. Because of this pressure on emulation, classic simulators were often very picky
about theworkloads that can be simulated – they could often only target relatively simple benchmarks
compiled with a specific compiler version against a specific system library on a specific distribution.

One of the very early observations in developing XIOSim was that emulation is in fact unneces-
sary – the simulation host itself is the best (correct by definition, already validated, faster than any
emulator) functional model of an x86 machine. To that end, XIOSim uses the Pin binary instru-
mentation toolkit [81] to observe the effects of executing an instruction on the host and to pass them
to a timing model. To the best of our knowledge, XIOSim is the first cycle-level simulator based on
this premise (commit a1f943 from 03/2010). It is inspired by PTLSim’s co-simulation [127], which
uses a modified version of the Xen hypervisor to transfer architectural state between the host and
simulated (virtualized) machine. This has proven to be a popular model with other new simulators
adopting it (McSimA+ [1], Sniper [20], ZSim [107]), independently of XIOSim.1 Dealing away with
emulators means that the simulator can now handle larger and significantly more complex workloads
(e.g. databases, search engine nodes, workloads running under JITs, etc.) without any correctness
issues due to esoteric instructions and their corner-case behavior. Of course, if such instructions are
performance-relevant for aworkload, they should bemodelled accurately (which iswhywe focus heav-
ily on XIOSim validation in the following sections).

1Theywere already under developmentwhenXIOSim implementation details were published and the code
was open-sourced.

49

XIOSim takes this idea one step further – just as there is no need for emulation, performance es-
timation rarely needs the actual values in architectural state. So there is no need for an explicit repre-
sentation of machine state for themajority of time. There are notable exceptions, of course, and these
can be taken from the simulation host’s architected state. Most importantly, memory operations need
addresses for accurate simulation (which can be intercepted by Pin relatively cheaply). Similarly, some
divider implementations can have variable latencies depending on the their operand values, but such
cases are rare and can be treated separately. This significantly simplifies the implementation of a split
simulator – the functional part is limited to a host state observer.

XIOSim implements this model by splitting the functional and timing simulators in two com-
pletely separate processes, which we call: instruction feeder and timing simulator. The instruction
feeder uses Pin to instrument every executed instruction and to capture its current and next address,
instruction bytes, and memory reference addresses, if any. These are passed to the timing simulator
through interprocess queues, one per simulated core. In our implementation, the main parts of these
queues are in-memory files on tmpfs (or on disk, if necessary). Both reads from (on the timing side)
andwrites to (on the feeder side) these queues are very frequent operations, so they are implemented in
a lock-free manner, so they do not become bottlenecks. This multi-process split has several significant
benefits. First, most obviously, it allows for multiprocess simulation (we launch multiple feeders and
a harness process to orchestrate them). Second, keeping the feeder relatively light reduces the amount
of interference that the simulator itself causes on the simulated application (for example, by polluting
its address space). Finally, decoupling allows us to hide the costs of binary instrumentation and to
effectively pipeline functional and timing simulation. This is at the expense of using extra cores on
the simulation host.

There are two major issues typically associated with instrumentation-based simulators. Both stem
from the fact that the instrumentation engine can only see architectural machine state, and not im-
plementation details. The first one is micro-op cracking, which most other Pin-based models also
address. Modern x86 cores break down the potentially complex x86 instructions in simpler micro-
ops, and most performance properties are based on micro-ops, not the full instructions. Any per-
formance simulator with enough level of detail for microarchitecture studies needs a model of this
cracking. The XIOSim micro-op cracker is somewhat non-traditional. The classic model is one of
explicitly writing out micro-op tables by hand (the mapping from macro-op to micro-ops with their
respective operands) and simply doing a lookup at cracking time. Instead, we use a macro-op-level
instruction decoder (Intel XED [26]) to grab some properties of the macro-op and create the list of
micro-ops based on heuristics on them. For example, a very popular pattern that we fall back to is
load-op-store cracking, where a single macro-op with a read-write memory operand is broken down

50

into a load micro-op, the respective operation micro-op and a store micro-op. This shifts the burden
of maintaining precise instruction tables to the XED developers (we do maintain an extensive unit
test suite for our crackings, though) and allows for a simpler simulator implementation. The heuris-
tics approach is also somewhat slower than a direct table lookup. So far, this has not been a significant
performance problem inXIOSim, but we plan to hide themicro-op cracker behind a decode cache (as
seen in some fast emulators [21]), should it become one.

The second,more fundamental issue, ismodeling the effects ofmis-speculated instructions. Instru-
mentation engines like Pin are oblivious to wrongly predicted execution paths, but the instructions
on these paths can significantly impact end simulated performance. Other instrumentation-based
models have very high-level models for wrong-path effects: either a constant cycle cost for branch
mispredictions [107]; or a constant cost, but accounting for overlapping mispredictions [20]. Such
models ignore many significant performance effects, such as wrong-path instructions disturbing in-
struction caches and prefetchers [40]. XIOSim is the only instrumentation-based simulator that we
are aware of which models wrong-path instructions diligently and accurately, allowing one to capture
such effects.

In XIOSim, each feeder thread has a branch predictor, identical to the one that will be executed in
timing simulation. When that predictor makes an incorrect prediction, the feeder process is forked,
and a speculative child is sent on thewrong executionpath thatwas just predicted. Theparent (correct-
path) process then blocks until the child either: (i) produces enough instructions to fill a reorder buffer
(themaximum speculation length) and exits cleanly, (ii) terminates because of awrong-path exception
(e.g. a segfault), or (iii) is about to cause side effects outside of its own process (e.g. write to a file or
to a memory-mapped region). There are several important aspects for this model to be both correct
and practical. First, limiting the side effects of the speculative child process is crucial. This includes
finishing speculation on every system call, as well as capturing the mmap family of system calls in order
to keep track of regions of virtual memory mapped to files. Second, it is important to have a fallback
path, in case speculation stops because of side effects (which is an artefact of simulation, not some-
thing that would happen in real hardware) – in XIOSim, we send multi-byte NOPs to the timing
model – which stress the core’s front-end similarly to the instructions that would be executed. The
performance of this scheme can be sufficient – instruction feeder latency can be hidden because of
the buffering between itself and the timing simulator – and fork is relatively fast with copy-on-write
memory. 2

2One last performance bug for this scheme comes from the Pin VM sometimes capturing a segfault on a
wrong path and taking more than 30ms for error reporting, which is enough to cause performance bottlenecks
at very high branch misprediction rates.

51

1.0

0.8

0.6

0.4

0.2

0.0

M
e
a
s
u
re

d
 I
P

C

1.20.80.40.0

Simulated IPC

err = 11.02 % errweighted = 7.67 %

(a) End performance – IPC

20

15

10

5

0

M
e
a
s
u
re

d
 D

T
L
B

 m
is

s
 r

a
te

 (
%

)

20151050

Simulated DTLB miss rate (%)

err = 25.29 % errweighted = 29.76 %

(b) DTLB miss rate

Figure 4.1: Macro-level validaধon of Intel Atom models over the SPEC CPU2006 suite.

4.3 Validation

Macro-benchmark validation Macro-level validation is useful for a single final number repre-
senting the “goodness” of a particular model and for catching accuracy regressions. However, it has
limited value for improving the actual model – macro-benchmarks stress many of its components si-
multaneously – and can only guide the direction of improvement in very broad strokes.

Figure 4.1a shows macro-level validation for XIOSim’s Intel Atom models against an Atom 330
for the SPEC CPU2006 suite. Each dot is a single 100M-instruction SimPoint [111] that is run both
natively and in simulation. On average, XIOSim achieves 11% error. If we account for each points’
weight in representing the full-length application, the error falls below 8%.

While macro-benchmark validation can guide the direction of model improvement – usually by
comparing performance counters with simulation statistics – one has to be careful when interpreting
the results. We illustrate this in Figure 4.1b. A cursory look at the very high levels of relative error
in DTLB miss rates (>25%) would suggest spending significant development time to improve TLB
model accuracy. However, upon closer inspection, one notices that for more than 80% of samples,
TLBmiss rates are in fact lower than 1%, and the hight relative error comes from comparing, say, 0.1%
versus 0.05%. In this case, blindly chasing low relative per-component errors would hardly make a
difference in overall performance accuracy.

52

Validating sampled execution Simulated execution is orders of magnitude slower than that on a
native machine, so unless one is willing to tolerate multi-month-long validation experiments, some
form of sampling must be employed when validating against macro-benchmarks. The two major
general-purpose simulation sampling approaches – SimPoints and SMARTS – can have CPI errors
reaching, respectively, 10% [94] and 8% [124]. Thus, when model errors reach 10% and lower, com-
paring sampled simulated execution with full-length native runs becomes impractical – there is no
way to distinguish sampling error frommodel error. In an ideal validation experiment, the exact same
instruction sequence should be compared between simulated and native execution.

Such an experiment is easy for workloads that have natural quanta of work with clearly defined
boundaries – for example queries in database. For them, one can implement sampling on that quanta
with minor source modifications, and either start/stop collecting performance counters or simulated
execution at each sample [68]. That requires: (i) quanta of work; (ii) detailed knowledge of the work-
load in order to choose representative samples; and does not practically scale past 5 or 10 benchmarks.

For most XIOSim validation experiments, we choose a different approach. For the simulated runs,
we use SimPoints as intended to choose representative simulation regions (in particular, the PinPoints
implementation). For the native runs, we use lightweight binary instrumentation to approximate the
start and stop markers for a particular SimPoint, and use these approximations to start or stop per-
formance counter collection. For example, for natively-compiled SPEC workloads, we round Sim-
Points to the nearest function call and use hand-optimized lightweight instrumentation (through Pin
probes; with <0.9% overhead) to match the number of calls to that function to the ones exercised by
the SimPoint.3 Similarly, in HELIX-RC experiments (described in the next section), we approximate
SimPoints to the nearest loop boundary as identified by the ILDJIT compiler [18]. This method-
ology allows us to validate on virtually the same instruction sequence in both native and simulated
execution, and not incur sampling error between the two.

Targeted validation: proof by optimization Probably the most common approach to valida-
tion is what Yasin calls “proof by optimization” [126]. A simulator has to make many assumptions
about the implementation details of low-level components, and despite the large number of perfor-
mance counters, the effects of these assumptions usually cannot be measured directly. In this case,
the “optimization proof” that a new assumption fixes an accuracy regression is done in a few steps:
(i) isolate the accuracy issue with a microbenchmark as targeted as possible, so that the discrepancy

3We extend this methodology to power trace validation in our XIOSim paper [60], where the instrumen-
tation also inserts instruction sequences that cause a specific power consumption pattern picked up by an oscil-
loscope. Later, when post-processing the oscilloscope power trace, we look for these power markers to sync up
simulated and measured traces.

53

shows up in a high-level measurable metric (cycles, branch/cache MPKI, etc.); (ii) implement a new
version of the relevant component based on a new assumption (the “optimization” part); (iii)measure
whether the high-level metric now matches up (the “proof” part); (iv) if not, repeat with an updated
assumption.

The importance of the first step – a reproduction test that is targeted enough – cannot be over-
stated. Simulators can be thought of as performance models with thousands of dimensions, with
various workload features serving as an input to the model. The interactions between different di-
mensions (especially when modelling an out-of-order CPU) are usually non-trivial – it is very easy to
both mask a performance bottleneck with another one in an unrelated portion of the machine (e.g.
high i-cache miss rates hiding an under-provisioned decode unit) and to exacerbate one bottleneck
with another (e.g. high branch predictionmiss rates leading to d-cache bandwidth saturation because
of many speculative accesses). If a benchmark stresses many of these correlated dimensions, it is very
easy to end up optimizing the wrong bottleneck, and still see an accuracy improvement in the high-
level metric that is used to judge model goodness.

Example: One accuracy experiment from the early XIOSim models illustrates this approach well.
We were investigating a substantial amount of inaccuracy in one of the SPEC CPU2006 workloads.
Several performance counters were showing large differences with native execution – branch mispre-
diction rates, i-cache miss rates, d-cache miss rates, among others. We started by following up on
branch mispredictions. On the native execution, there were only several performance counters re-
lated to branches, so that could not drive the investigation to any specific part of the branch predictor.
On simulated execution, we saw an unusually high fraction of return address stack (RAS) predictor
misses. Our RAS predictor model at the time was a simple stack, with call instructions pushing their
return addresses and return instructions popping them (aswell as getting their next address predicted).

One of the (few) failure modes for a structure as simple as the RAS predictor is many speculative
call / return pairs that end up being mismatched and corrupting the stack. The classic mechanism
to account for that is checkpointing RAS state on a call, and reverting to the checkpoint on a related
branch misprediction, which is what XIOSim modelled. We wrote a microbenchmark to stress this
failure mode – stressing a call / return pair is easy with recursion, but we needed a bit more complex-
ity, so that we have enough speculative execution, as well as multiple return sites to confuse the RAS.
These can be all satisfied by a multiply recursive function, like a naive Fibonacci number implemen-
tation. This was a correct hypothesis, and the microbenchmark also had high RAS miss rates, as well
as a large discrepancy in branch prediction rates with native execution.

The microbenchmark also suggested a possible solution – limit the amount the damage that spec-

54

ulative execution can cause to the RAS stack. We implemented a RAS with two stacks4 – real and
speculative – where pushes / pops to the real stack happen at commit time only by non-speculative
calls and returns. Critically, returns before that (which can still bemispredicted) can only pop from the
speculative stack, but can predict from the real stack. After implementing this multi-stack RAS, our
microbenchmark’s simulated performance very closely matched native hardware, strongly suggesting
that Intelmachines use a similar RASpredictor implementation. Similarly, the amount of branch pre-
dictor misses in the macro-benchmark that triggered this investigation was within an acceptable error
margin, and the error on other counters also decreased noticeably – suggesting that RAS behavior was
indeed one of the related bottlenecks in this instance.

Last resort: tracing If all other approaches fail, one can resort to tracing in order to find perfor-
mance inaccuracies. In debug mode, XIOSim maintains a full trace of microarchitectural events that
gives full visibility of the simulatedmachine. The trace can easily log 30-50 events per instruction, and,
at simulation speeds of 100s of KIPS, can grow at 10s of MBs per second. This is why XIOSim keeps
it in a in-memory circular buffer and only flushes it on assertion failures or at the end of simulation.
Identifying the root cause of a problem in that trace is often quite laborious.

Example: This approach is best illustrated with a recent example from validating XIOSim on
memory allocation workloads (described in detail in Chapter 5). A particular memory allocation mi-
crobenchmark exhibited random performance regressions in about 10% of simulations without any
apparent change in conditions or simulation parameters. Themicrobenchmarkwas designed to stress
best-case allocation, with very good cache behavior, so it achieved IPC of 3.0 on a 4-wide simulated
Haswell core, more than most workloads we had ever simulated. In the 10% of faulty runs, simu-
lated IPC dropped drastically down to 2.2. Typically, such large changes in performance between runs
indicate problems in the cache hierarchy – dynamically-allocated addresses do change run-to-run –
however, in this case, all cache statistics were the same between the faulty and accurate runs, and all
showed the perfect caching behavior that was expected.

After several failed attempts to reproduce the issue with more targeted microbenchmarks, tracing
was the last viable option. After comparing traces, we found many DTLB accesses not making it to
the TLB and getting the corresponding loadmicro-ops rescheduled. The high IPC caused TLB band-
width (provisioned at 3 for aHaswell machine) to become a bottleneck. Interestingly, we were already
modelling a TLBwith sufficient theoretical bandwidth. However, we assumed it was implemented as
a simple interleaved banked cache, where a hash function sends requests to the appropriate bank. The
faulty runs were due to dynamically allocated pages hashing to the same bank and reducing effective

4Conceptually, a hardware implementation can use a single array with two top-of-stack pointers

55

16
4.

gz
ip

17
5.

vp
r

19
7.

pa
rs

er

30
0.

tw
ol
f

18
1.

m
cf

25
6.

bz
ip

2

IN
T

Geo
m

ea
n

18
3.

eq
ua

ke

17
9.

ar
t

18
8.

am
m

p

17
7.

m
es

a

FP
 G

eo
m

ea
n

Geo
m

ea
n

0

2

4

6

8

10

12

14

16

P
ro

g
ra

m
 s

p
e
e
d
u
p

2-way IO

2-way OOO

4-way OOO

Figure 4.2: HELIX-RC speedup relaধve to each core type’s baseline.

bandwidth. We changed our models to assume a more brute-force multi-ported cache implementa-
tion, but are also planning to implement more advanced TLB bandwidth optimizations [6], which
can result in similar bandwidth without the large area cost of a multi-ported cache. We also added
additional simulation statistics, so similar problems can be identified without resorting to tracing.

4.4 Case study: HELIX-RC

HELIX-RC [19] is a co-design between a parallelizing compiler and a small addition to a processor’s
cache hierarchy, ring cache, which enables the compiler to parallelize irregular programs with unpre-
dictable control flow and many data dependences. Ring cache was modelled in XIOSim and the
detailed cycle-by-cycle models proved invaluable in evaluating its various design choices. Moreover,
HELIX-compiled code was complex enough, and included simulating a JIT compiler, which puts
it beyond the workloads easily handled by traditional cycle-level simulators. While HELIX-RC is a
large collaborative effort and all its details are beyond the scope of this dissertation, we will outline the
requirements such a project poses on simulation infrastructure.

One of the main aspects of the proposed system is extreme latency sensitivity. The loops paral-
lelized by the HELIX-RC compiler have extremely short iterations (the 50th percentile of loop iter-
ation durations is only 25 cycles). However, in parallel execution, they also need to communicate to

56

16
4.

gz
ip

17
5.

vp
r

19
7.

pa
rs

er

30
0.

tw
ol
f

18
1.

m
cf

25
6.

bz
ip

2

IN
T

Geo
m

ea
n

18
3.

eq
ua

ke

17
9.

ar
t

18
8.

am
m

p

17
7.

m
es

a

FP
 G

eo
m

ea
n

Geo
m

ea
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
la

ti
v
e
 S

in
g
le

 T
h
re

a
d
 P

e
rf

o
rm

a
n
ce

2-way IO

2-way OOO

4-way OOO

Figure 4.3: Baseline execuধon on various core types.

satisfy inter-iteration dependencies. With a conventional coherent cache hierarchy, the latency to send
a single cache line to another core – at least 75 cycles on modern processors – is large enough to erase
the gains from parallelizing these loops. Our sensitivity analysis has shown that even a very aggres-
sive latency of 10 cycles is too high for meaningful speedup. Our proposed hardware addition, ring
cache, cuts down core-to-core communication latency to effectively 0 by proactively sending data be-
fore it is needed and by relying on various compiler guarantees. This extreme latency sensitivity places
significant importance on diligently modeling every single CPU cycle in simulation.

Our initial prototype assumed parallelizing for in-order, Atom-like cores, and achieved speedup of
6.85× on SPECint CPU2000 against these cores’ sequential execution (Figure 4.2, 2-way IO). How-
ever, one interesting research question5 was that integrating ring cache with a complex out-of-order
core would erase the gains from parallelization. The rationale behind this hypothesis is that the HE-
LIXcompiler extracts very fine-grained thread-level parallelism (TLP), fine enough that it can compete
with the instruction-level parallelism (ILP) that an out-of-order core is designed to extract.

Initial results from simulating aggressive out-of-order cores equipped with ring cache seemed to
suggest this was the case – with no speedup. After investigating the cause of slowdown, we found it
to be in the integration between the core’s load-store queues and ring cache, and adjusted our designs
accordingly. In more detail, one of the synchronization primitives we propose, wait, has semantics

5... and a common cause of concern for paper reviewers

57

16
4.

gz
ip

17
5.

vp
r

19
7.

pa
rs

er

30
0.

tw
ol
f

18
1.

m
cf

25
6.

bz
ip

2

IN
T

Geo
m

ea
n

18
3.

eq
ua

ke

17
9.

ar
t

18
8.

am
m

p

17
7.

m
es

a

FP
 G

eo
m

ea
n

Geo
m

ea
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
ro

g
ra

m
 s

p
e
e
d
u
p

2-way IO

2-way OOO

4-way OOO

Figure 4.4: Overall parallel performance, normalized to simplest cores.

intuitively similar to a regular load, and some of our first models treated it like one – issuing it from
the core’s load queue, and surrounding it with lightweight fences to ensure ordering of waits and that
other regular loads are not reordered with respect to the wait. These fences also affect unrelated loads
and greatly reduce the amount of memory-level parallelism of surrounding code, eventually resulting
in slowdown.

Our later prototype treated waits similarly to stores, and issued them from the naturally-ordered
store queue. This significantly reduces both design complexity and the number of fences required.
Speedup levels in this case are comparable with those of in-order cores (where none of these concerns
are relevant), albeit still lower – as seen in Figure 4.2. Our experience with this particular design choice
highlights the importance of cycle-by-cycle simulation when evaluating hardware-software co-design
systems like HELIX-RC.Many higher-lever models would have likely missed the subtle differences in
ordering and wrongly concluded that ILP is indeed very strongly cannibalizing TLP.

Our simulation results show this effect to a much smaller degree. Furthermore, while speedup
indeed gets lower with more aggressive core implementations, each core’s baseline (single-threaded
execution) is also significantly faster (Figure 4.3), which results in higher overall performance formore
aggressive cores – Figure 4.4. This higher performance certainly comes at high power cost, and one can
imagine a heterogeneous system where the power-aware parallelizing compiler manages the parallel
performance versus power tradeoffs. While we do not have validated power models for large out-of-

58

order cores yet to perform this study, it highlights the type of work that can be done with extensive
and accurate simulation infrastructure.

Finally, after the initial HELIX-RC simulation study, a hardware implementation of ring cache in
Verilog matched the performance predicted by XIOSim perfectly cycle-for-cycle [14].

59

5
Accelerating memory allocation

5.1 The need for broad acceleration

In the long term, the confluence of technology trends points steadily towards hardware specialization.
Continued transistor density increases, coupledwith the end ofDennard scaling, result in the inability
to power a whole chip at maximum performance – the problem known as dark silicon. Hardware
specialization has been widely adopted in processors to solve this problem.

Much existing effort in hardware specialization has focused on “deep” acceleration following the
classic Amdahl’s 90/10 rule. This involves identifying “killer applications” and optimizing their most
costly kernels, be it ranking inwebsearch [97], convolutions in image processing [98], ormatrix-vector
products in neural network inference [103]. This strategy has seen especially great traction in mo-
bile systems-on-chip, where the majority of silicon area in current designs is dedicated to specialized
blocks [110]. However, the server chips powering cloud workloads remain predominantly general-
purpose.

Amajor reason for this omission is that modern datacenter workloads are simply too diverse, with-
out any opportunities for 90% optimization. Not only do they run thousands of different applica-
tions, but the individual workloads themselves have also been shown to not have significant hotspots
that can be optimized with deep approaches [58]. This does not mean hardware acceleration in dat-
acenters is infeasible. Characterization studies show that a large fraction of cycles is spent on the so-

60

called “datacenter tax” – low-level routines like remote procedure calls, data serialization andmemory
allocation. While each individual component of this tax is a relativelymild hotspot (in the 2-8% range),
together they can comprise up to 30% of all cycles in Google datacenters [58].

The ubiquity of the datacenter tax suggests an alternative “broad” approach to acceleration: speed-
ing up multiple shared low-level routines that appear in many applications. This approach may not
provide the 10× application speedups typically associated with hardware specialization. But accumu-
lating several instances of such several-percent optimizations can save significant amounts of CPU cy-
cles, especiallywhendeployedbroadly across thehundreds of thousandsof servers that cloudproviders
operate. Borkar refers to this approach as “10 × 10 optimization” [13] and argues that it is a necessity
for continued performance increases in the era of dark silicon.

Of the components that comprise the datacenter tax, perhaps the most familiar one is malloc:
dynamic memory allocation. malloc is such a popular programming paradigm that many collective
developer-years have been spent researching and optimizing allocation strategies and techniques. For
example, a typical malloc call takes only 20 CPU cycles on a current-generation general-purpose pro-
cessor, setting the bar high for potential hardware implementations. malloc exemplifies the unique
set of challenges facing broad acceleration: because calls to these routines tend to be very frequent,
fast, and interspersed inside other application code, accelerators must be optimized for latency rather
than throughput, and because each such accelerator brings a limited amount of overall application
speedup, overheads must be kept to a bare minimum.

In this work, we present the design of Mallacc, a memory allocation accelerator that meets these
constraints. Mallacc is a tiny in-core hardware block which accelerates the three primary operations
of a typical memory allocation request: size class computation, retrieval of a free memory block, and
sampling of memory usage. Mallacc is designed not for a specific allocator implementation, but for
use by a number of high-performancememory allocators commonly found in datacenters today. Our
goal is tomake the already fast (20-30 cycle) malloc calls even faster, because they are so frequent, and
Mallacc achieves that goal. It can reduce malloc latency by up to 50% while occupying less than 1500
µm2 of silicon area. As we will show,Mallacc far exceeds the “1% speedup for 1% area”mantra that has
informally guided processor development over the past decades.

5.2 Dynamic memory allocation trends

Dynamic memory allocation has been studied for decades. In this section, we place our work in the
context of past literature. We discuss historical research on allocators, general techniques and struc-
tures that are still used in modern allocators, and factors that drove evolution of allocators over the

61

decades.
At a very high level, a dynamic memory allocator sits between an application and the operating

system (often as a part of the platform’s standard library). It requests continuous blocks of memory
from the OS and distributes chunks of them, with different sizes, to call sites in the application that
explicitly request them. Allocators are judged on both the speed with which they satisfy a request and
their memory fragmentation, which measures how much memory is requested from the OS vs. how
much memory the application actually uses.

In the very early days, mainmemory was expensive and scarce, so allocator design focused onmini-
mizing memory fragmentation and overhead. Starting from the 1960s, researchers studied data struc-
tures for storing free objects, notably linked lists [29] and trees [115]. Various strategies for search-
ing through free lists of memory blocks to identify the right object to return were examined: such
as returning the first block large enough (“first fit”), the exact size (“best fit”), and many more [28].
Techniques for efficiently splitting and coalescing free memory objects were also studied; one notable
example is the buddy system, in which a free object can split into two “buddy” objects for small al-
locations, but can only be merged with that same “buddy” when a large allocation is needed [63].
The notion of size classes – allocating memory from a set of specific sizes – was also conceived decades
ago [117].1 Many of these techniques and data structures are still used in today’s allocators.

Over time, two trends motivated significant changes in allocator design. First, main memory costs
dropped and densities increased exponentially thanks toMoore’s Law. However, unlike CPU speeds,
mainmemory access latencies stagnated. The increasing gap betweenCPUandmemory speeds shifted
the focus from memory fragmentation to speed. Second, the rise of multi-core processors and multi-
threaded applications in the last decade motivated allocator designs that were fast and efficient in the
face of problems like lock contention, false cache sharing, andmemory blowupwith large numbers of
threads. Modern allocators like Google’s tcmalloc [42], FreeBSD’s jemalloc [36], Hoard [10], and
others were all designed to support robust multithreaded performance.2

Modern multithreaded allocators like the ones listed above all share a common set of design prin-
ciples. First, they logically organize available memory in a hierarchical fashion. The top level is a pool
of memory that can only be accessed by a limited number of threads (often just one) to mitigate the
cost of synchronization. These pools are highly optimized in software such that a hit in one is likely to
be considered “fast enough”. They are backed by lower-level pools, which are shared among threads.
Memory is migrated back and forth as necessary. Second, they select a set of size classes and round

1Research in allocators has been especially prolific – for a significantly more complete survey of early ap-
proaches, refer to Wilson et al. [121].

2Similarly, Ferreira et al. [41] provide a succinct overview of the structure of modern allocators.

62

requested sizes to the next nearest size class, which simplifies splitting and coalescing of larger mem-
ory blocks and reduces the amount of metadata needed. Third, they use different methods to allocate
“small” and “large” chunks of memory (though they differ on the exact thresholds of considering a
chunk small). Finally, they ensure that memory can migrate from thread to thread to avoid memory
blowup in scenarios where one thread allocates memory and another thread frees memory.

Within this framework of common design principles, modern allocators can differ significantly in
their implementations. For example, size classes are selected based on different upper bounds ofmem-
ory fragmentation. Heuristics for determining when to migrate memory from lower to upper levels,
as well as how many blocks to move, vary greatly too. Lower level pools tend to store larger blocks of
memory that are then sliced into smaller chunks for top level pools, which is a time-consuming process
that requires synchronization. Similarly, at some point additional memory must be requested from
the operating system, which requires a costly system call. Developers must balance the frequency of
these requests with the overall memory usage and consider various allocation patterns from different
applications. Therefore, the parameters of these procedures tend to change relatively frequently as
developers seek out new optimizations and tradeoffs.

Compared to the broad popularity of software allocator research, creating custom hardware for al-
locators has received next to no attention. We are only aware of one feasibility study [75] and several
variations of the buddy technique [17, 24, 25, 74], which show that it easily maps to purely combina-
tional logic. While buddy allocation has been available for decades, modern allocators have converged
to simpler techniques in their highest-level pools (most frequently, first-fit free lists), most likely due
to buddy systems’ reported high degrees of fragmentation [121] and relative complexity.

This presents an opportunity for hardware designers looking to accelerate allocation. Rather than
design a whole new algorithm from scratch to simplify hardware implementation, they can speed up
the common elements of modern allocators – the “fast enough” top-level pools – and allow differ-
ent allocator algorithms to tune the details on the lower levels in software for their own workload
assumptions. In the rest of the chapter, we demonstrate the feasibility of this approach by optimizing
the top-level pools ofTCMalloc [42]. While TCMallocmakes for a good anchor point to demonstrate
gains – it is mature, robust and among the faster allocators [41] – the optimizations we propose can
easily be used by other modern allocators.

5.3 Understanding TCMalloc

We start by describing how TCMalloc allocates and deallocates memory and compare and contrast it
with other multithreaded allocators. We profile the costs of several allocator code paths and find that

63

101 102 103 104 105

malloc duration (cycles)

0

10

20

30

40

50

T
im

e
 i
n
 c

a
lls

 (
P
D

F
%

)

Fast path

Get from
central cache

Get from
page allocator

400.perlbench.diffmail

Figure 5.1: The costs of hits and misses in several allocaধon pools in TCMalloc vary by orders of magnitude.

the fast path is an overlooked area for potential optimization.

5.3.1 TCMalloc overview

Allocation pools Like many other allocators, TCMalloc allocates memory from a hierarchy of
memory pools. At the top are thread caches assigned to each thread of a process, and meant to ser-
vice small requests (< 256KB). Each cache contains many singly-linked free lists – lists with addresses
to free chunks of memory of the same size. There is one free list per size class. TCMalloc currently
has 88 size classes, a relatively large number picked to keep memory fragmentation low. When a free
list is not empty, a small allocation can be satisfied by simply popping the head off the list. Since these
caches are thread-local, no locks need to be acquired and a thread-cache hit is relatively fast. jemal-
loc’s thread caches were inspired by TCMalloc [37], and their size class organization is quite similar.

If a free list is empty, the allocator must first fetch blocks into a thread cache from a next-level pool.
In TCMalloc, it either attempts to “steal” some memory from neighboring thread caches, or gets it
from a central free list. Both approaches require locking, and are orders of magnitude slower than
hitting in a thread cache. Should both of these sources be empty themselves, TCMalloc allocates a
span (a contiguous run of pages) from a page allocator, breaks up the span into appropriately sized
chunks, and places these chunks into the central free list and the thread-local cache. Large requests
(> 256KB) go directly to spans and bypass the prior caches. Should the page allocator also be out of
memory, TCMalloc then requests additional pages of memory from the operating system.

Figure 5.1 illustrates the cycles costs associated with hitting or missing in several of these pools for

64

101 102 103 104 105

malloc duration (cycles)

0

20

40

60

80

100

T
im

e
 i
n
 c

a
lls

 (
C

D
F

%
)

fast path

400.perlbench

465.tonto

471.omnetpp

483.xalancbmk

masstree.same

masstree.wcol1

xapian.abstracts

xapian.pages

Figure 5.2: Majority of ধme in malloc in CPU2006 is spent on calls taking less than 100 clock cycles.

400.perlbench from SPEC CPU2006. It is a simulated distribution (details on our methodology
follow in Section 5.5) of time spent in each malloc() call over the call’s duration in cycles. The three
major peaks correspond to hitting in a thread cache, missing in a thread cache and hitting in the central
free list, and grabbing a span. Missing in a thread cache has a cost at least three orders of magnitude
higher than that of a hit. Because of the high costs, too many misses in the highest-level pool can be
detrimental to allocator (and application) performance. TCMalloc employs several heuristics to trans-
fer chunks ofmemory between the various pools in an effort tomaximize thread cache hit rates. These
heuristics (and the particular implementation details of the lower-level pools) are what distinguishes
differentmodern allocators fromone another. Note, however, that despite their very lowper-call cost,
thread cache hits represent a significant chunk of allocator cycles overall for 400.perlbench. We will
come back to this observation in the following section.

Memory deallocation Deallocation follows a similar path. Whenmemory is being freed, TCMal-
loc first determines the size class of the freed object. If that object is small, it gets pushed to the top of
the appropriate thread cache free list, and if that free list now exceeds a certain size (2MB), TCMalloc
returns unused objects back to the central free lists. If the freed object is large, pages of memory get
returned back to the page allocator.

65

No

Yes No Yes No

Yes Yes

Compute
size class

Sample
allocation?

Do sampled allocation

Get free
list

Pop head

Fetch from central cacheAllocate pages

Is free list
empty?

Return

Is small
size?

malloc()

Fast path

Figure 5.3: The steps that an allocaধon requests goes through. The colored boxes represent the major operaধons on
the fast path, which we aim to opধmize.

5.3.2 Time spent in the allocator

As discussed in the prior sections, research in allocator design has focused on the lower-level memory
pools because of their potentially catastrophic effects onperformance. This is also partially because the
fast paths– those that hit in thread caches – are already considered sufficiently optimized. Microbench-
mark experiments often support such a hypothesis. For example, our tp_small microbenchmark
(described later) achieves an average malloc() latency of only 18 cycles.

However, we find that for a range of applications, time spent on the fast path is not only a signifi-
cant, but also a major fraction of time spent in the memory allocator. Figure 5.2 shows this property
for the four SPEC CPU2006 benchmarks that actually call the system allocator. In the cumulative
distribution of malloc() time, more than 60% of time is spent on calls that take less than 100 cycles.
For xapian, an open source search engine, we see an even higher fraction. This need not be the case
for all workloads: for example, the performance tests of masstree, a key-value store, never free any
memory and end up continuously getting more from the page allocator (which eventually goes to the
operating system). A real deployment of masstree does free memory and has much better thread-
cache hit rates, but even such corner-case behavior spends more than 30% of allocator time on the fast
path.

There are two main reasons for the high fraction of fast-path time that we observed. First, while
individually cheap, fast-path calls can be very frequent – a classic “death by a thousand cuts” scenario.
This is especially true for applications that allocate and deallocate at similar rates so that their requests
almost never have to reach the other memory pool levels. Second, thread caches are very cheap in
microbenchmarks, but can get significantly more expensive when the requesting application itself is
cache-heavy. In that case, the application’s memory accesses evict the allocator’s data structures from
the CPU’s caches, and a cheap 18-cycle fast-path call can turn into a hefty 100-cycle stall onmainmem-
ory.

Thus, we believe the fast path of memory allocators presents an overlooked opportunity for opti-

66

0 5 10 15 20 25 30
Fast path cycles

ubench.antagonist

ubench.gauss

ubench.gauss_free

ubench.sized_deletes

ubench.tp

ubench.tp_small

Baseline
Sampling

Combined
Size class Push/pop

Figure 5.4: Time spent in the three main components of the fast path accounts for≈ 50% of cycles.

mization and focus the rest of the chapter on speeding it up with specialized hardware. For that, we
need a detailed understanding of the work done during fast path calls, and the costs associated with it.

5.3.3 Analysis of the fast path

By definition, the fast path is a memory request satisfied by a thread cache free list. And by design,
an access on the fast path has little work to do. For TCMalloc compiled with GCC 6.1, the fast path
is only ≈ 40 static x86 instructions, and can take 18-20 cycles, assuming cache hits. It contains a
few conditional branches that are easy to predict and no loops. Microbenchmarks with back-to-back
allocations and deallocations can achieve an IPC of 3.0 on a 4-wide IntelHaswell core. In other words,
it has been heavily optimized. Thus, speeding it up further is an exercise in performance microscopy
and in reducing the latencies of the different steps of a fast allocation. Figure 5.3 illustrates these steps
in the context of an incoming allocation request: 1) finding the appropriate size class for the requested
size, 2) potentially sampling the request, and 3) satisfying it by popping the head of the corresponding
free list. In the rest of the section, we go into more detail about the computation in each step and its
cycle costs.

Note that we can (and do) estimate these costs, even if they are caused by only several instructions,
because we rely on simulation. This is how we construct Figure 5.4, which contains cycle costs for
severalmicrobenchmarks designed to stress different fast path aspects. With simulation, we can simply
remove these instructions from simulated execution and subtract the resulting cycle count from a
baseline. These are estimates, andnot strictly additive, since out-of-order cores explicitly overlapwork.

67

size_t SizeClass(size_t size) {
size_t class_index;
if (size <= 1024)

class_index = (size + 7) >> 3;
else

class_index = (size + 15487) >> 7;
return size_class_table[class_index];

}

size_t class = SizeClass(requested size);
size_t alloc_size = size_table[class];

Figure 5.5: Size class lookup funcধon.

When all removed together (the Combined bars in Figure 5.4), they make up for half the cycles of the
fast path.

Size class calculation This operation rounds the requested allocation size to the nearest size class
supported by the allocator. Because small size classes are more commonly observed, the spacing be-
tween small size classes is closer, and this spacing grows with the size class. Size classes are carefully
tuned to balance fragmentation and allocator latency, so typically the mapping from size to size class
does not have an easy closed form. In TCMalloc, this is implemented by first computing a size class
index from the requested size and then indexing into two precomputed arrays, precomputed at ini-
tialization time for the size class and rounded size that it represents (Figure 5.5). The class index only
requires an add and a shift, but the two array lookups can be comparatively costly, even if they hit in
L1 because they are on the critical path of execution. The number of class indices (the size of the first
array) is set by the threshold for a small allocation andbymemory alignment requirements. This num-
ber was fixed at slightly above 2100 in 2007 when TCMalloc was open-sourced and has not changed.
The second array is much smaller, currently at 88 (the number of size classes), and has seen two small
increases since 2007.

Despite having 88 size classes available, we find that applications often use a relatively small subset.
Figure 5.6 shows that, for the benchmarks we surveyed, all but one use less than 5 size classes on 90%
of malloc calls. In fact, masstree almost exclusively uses a single size class.3 xalancbmk has a much
broader distribution, but even so, it uses one size class over half of the time. This observationmotivates
techniques to memorize the most common size classes.

3For allocations below 256KB only, which are handled by the fast path.

68

5 10 15 20 25 30
Size classes

0

20

40

60

80

100

m
a
llo

c(
)

ca
lls

 (
%

 C
D

F)

400.perlbench

465.tonto

471.omnetpp

483.xalancbmk

masstree.same

masstree.wcol1

xapian.abstracts

xapian.pages

Figure 5.6: Many benchmarks use a very small number of size classes.

pop:
load temp, MEM[head] ; Get the head.
load next_head, MEM[temp] ; Get head->next.
store MEM[head], next_head ; head = head->next.
return temp

push:
load temp, MEM[head] ; Get the head.
store MEM[head], new_head ; Set new_head as head.
store MEM[new_head], temp ; new_head->next = temp.

Figure 5.7: Criধcal memory accesses on a free list push/pop.

While usually free is perfectly complementary to malloc and we rarely mention it, there is a
marked difference in size class computation. free does not take a size parameter, only the pointer
to be deallocated, so it must perform extra work to determine the size class to return it to. In TCMal-
loc, this is implemented by a hash lookup from the address being freed to the size class. This hash
tends to cache poorly, especially in the TLB, leading to expensive losses. C++11 ameliorates this prob-
lem because the compiler can choose to call operator delete() with an extra parameter equal to
the size of the object being freed, as long as the object’s size can be determined at compile time. With
-fsized-deallocation, the compiler prefers calling that variant when it can. In our results, we
assume sized delete when applicable.

Push/pop a free list head Once a size-class is identified, all that is left is to pop (or push) the head
of its free list. Pushing to or popping from a free list generates a dependent chain of three memory

69

accesses, as shown in Figure 5.7. In these cases, the most critical operations are the two loads on the
pop path, because long-latency load misses can stall execution and commit of younger instructions.
Since calls to the allocator are interspersed among application code, the free lists are prone to evic-
tion, making these loads likely to miss. Figure 5.4 demonstrates this clearly with the antagonist
microbenchmark, which emulates such cache-trashing behavior, and sees a significant increase in Pop
time. In contrast, stores misses are less likely to stall the execution or commit of younger instructions,
making the deallocation path less performance-critical.

TCMalloc uses a trick to save memory taken up by the free lists: it stores the next pointer at the
address of the block of memory it is about to return, instead of allocating a separate field in a struct
for it. That is, *head is the value of the next pointer, rather than a more familiar list node with fields
node->head and node->next. In addition to reducing allocator memory overhead, dereferencing
head to get the next pointer has the side effect of prefetching the returnedmemory block itself, which
can likely help the caller.

Sampling For monitoring and debugging purposes, TCMalloc can also sample allocation requests
every N bytes. A sampled allocation dumps and stores a stack trace in addition to performing the
allocation itself. Sampling is invaluable in a production setting for analyzing memory usage and de-
bugging memory leaks without having to stop, let alone recompile, live jobs, but it adds a measurable
overhead to eachmalloc request, since a countermust be decremented and checked against the thresh-
old each time.

Remaining instructions The three main steps described above account for ≈ 50% of fast path
cycles. The remainder are split roughly evenly between: function call overhead (pushing / popping
registers), addressing calculations (for example, of a free list in a thread cache) and updates tometadata
fields (such as free list lengths and total size). While it is tempting to consider hard-coding the latter
two in hardware, this would result in a rather narrow and inflexible accelerator, and severely limit its
applicability to either other allocators, or even future revisions of the same allocator.

5.4 Mallacc: a malloc accelerator

Based on the characterization in the previous sections, we proposeMallacc, a fast-pathmalloc accelera-
tor to augment a general-purpose processor. Broadly,Mallacc consists of a tiny dedicatedmalloc cache
and a sampling performance counter. Its design requirements are extremely stringent. Since each fast-
path call is on average only a few tens of cycles long, proposed structuresmust be inside cores, or access

70

Valid Size range
(index range) Size class Size Head Next

1 0 - 1 1 8 0x8080 0x8088
1 63 - 64 25 512 0x9090 0x9290
1 5 - 6 4 48 0x0 0x0
0 - - - - -

Figure 5.8: A malloc cache with example values. The cache is searched by first an associaধve lookup over requested
size and later by size class. It stores the corresponding size class, and the first two free-list elements for that size
class.

latency will erase any gains, which implies very tight area constraints. In addition, we would like to
hard-code as few allocator-dependent details as possible (ideally none), so that many current and fu-
ture allocators can benefit from acceleration. Our proposed design demonstrates that it is possible to
meet these constraints, and the rest of this section describes it in detail. Our descriptions assume the
x86 architecture, but the general principles and mechanisms are not x86-specific.

5.4.1 The malloc cache

In Section 5.3.3, we identified size class computation and popping the head of a free list as the biggest
contributors to fast-path cycles, especially with cache-heavy workloads invoking the allocator. We can
optimize both with a tiny, two-part cache that we call the malloc cache. Conceptually, it learns the
mappings from requested allocation sizes to both the size class they correspond to and the first two
elements of the free list for that size class. In the case of a malloc cache hit, computation can almost
immediately return to the caller. Byonly storing themost frequently-accessed size classes, the cache can
be kept extremely small (several entries). Lookups, updates and prefetches in the cache are software-
managed, so it is also not tied to a particular allocator implementation. A four-entry cache, populated
with some example values, is shown in Figure 5.8. We will go over its main components.

Size class mappings By definition a single size class represents a range of allocation sizes that get
rounded up and given the same amount ofmemory. Themalloc cache learns and stores themappings
from a requested size range to the size class representing it.

When a requested size comes in, it is associatively checked with the upper and lower bounds of the
ranges that currentlymake up all cache entries. If the request size is inside a range, the access is declared
a hit, and the cache returns the size class and its corresponding rounded size. More interestingly, on a
miss, execution goes to a fallback path, where software is left to compute the size class as it ordinarily

71

def mcszlookup(ReqSize):
IsHit = Cache.FindRangeContaining(ReqSize)
if IsHit:
SizeClass = Cache[ReqSize].SizeClass
AllocSize = Cache[ReqSize].AllocSize
ZF = 1

else:
ZF = 0

return SizeClass, AllocSize

def mcszupdate(ReqSize, AllocSize, SizeClass):
IsHit = Cache.FindSizeClass(SizeClass)
if IsHit:
SizeRange = Cache[SizeClass]
if not SizeRange.Contains(ReqSize):
SizeRange.LowerBound = ReqSize

else:
if Cache.Full():
Cache.Evict()

SizeRange = (ReqSize, AllocSize)
Cache.InsertRange(SizeRange, SizeClass)

Figure 5.9: Pseudocode for size class instrucধons.

would. Software is then responsible to update the cache with the new (requested size, allocated size,
size class) entry. The cache either inserts a new size class entry with the new range, or it expands the
range for an already existing size class. If the cache is full for an insertion, an old entry is evicted based
on an LRU policy.

The cache is managed by two new instructions: mcszlookup and mcszupdate (malloc cache size
lookup/update). mcszlookup takes the requested allocation size in an input register and returns the
size class and allocation size in two output registers if the requested size is found in the cache. The zero
flag (ZF) is set if found and cleared if not. mcszupdate takes the original requested size, the computed
size class, and the allocation size in three input registers and either inserts a new entry into the cache
or updates an existing one. No registers are modified. Pseudocode for the instruction mnemonics is
shown in Figure 5.9. Figure 5.10 is an assembly snippet demonstrating how they integrate with the rest
of allocator code.

Our actual implementation has one additional optimization – instead of keying the array on the
actual requested size range, we use the range of size class indices, as defined in Figure 5.5, and add
dedicated hardware to compute the index from the requested size. Because the space of indices is sig-

72

Start:
; rax = size class (dest)
; rbx = allocated size (dest)
; rcx = requested size (source)
mcszlookup rax, rbx, rcx ; Sets ZF
je ComputeSizeClass ; if ZF = 1, jump.

Resume:
; Continue with the rest of malloc.

ComputeSizeClass:
; The usual software calculation for the size class (rax)
; and allocated size (rbx). Then update the cache.
mcszupdate rcx, rbx, rax
jmp Resume

Figure 5.10: Integraধon of size class instrucধons in an allocator.

nificantly smaller than the space of requested sizes, the cache can learn mappings faster, with fewer
cold misses. The hard-coded hardware adds an additional cycle of latency to the cache, which we do
model. It is the only TCMalloc-specific optimization in Mallacc, and can be disabled with a configu-
ration register. In this mode, the malloc cache will build ranges of known requested sizes, although
with slightly higher miss rates.

Free list caching An allocation call requires popping an element off a free list. As mentioned in
Section 5.3.3, this is the most performance-critical part of a fast-path call, because it caches poorly and
accesses memory prone to eviction by the application’s own cache accesses. The malloc cache tackles
this bottleneck by storing copies of the head and the next head of the free list associated with a size
class alongside the size class mappings. Figure 5.8 illustrates this with an example.

Storing the first two list items in themalloc cache allows aMallacc-enabled allocator to immediately
return a value to the application after a hit. It also allows the next instruction in a linked list pop, the
one that sets the head of the linked list to the current next element, to commit immediately without
waiting for an often-required L2 or L3 miss in order to first fetch that next element. We find that
second effect especially important, because the long-latency miss often blocks other otherwise-ready
instructions from committing.

We introduce two new instructions to enable such operation. Most importantly, mchdpop (Fig-
ure 5.11) takes in the requested size class as an input (which we have ideally gotten from the previous
optimization), and returns the cached copies of the first two list elements on a hit. If either of them is
not present (NULL) in the cache entry, the access is declared a miss, the other one is also invalidated,

73

def mchdpop(SizeClass):
Found = Cache.FindSizeClass(SizeClass)
if Found:
Head = Cache.GetHead(SizeClass)
Next = Cache.GetNext(SizeClass)
if Head and Next:

Cache.SetHead(SizeClass, Next)
Cache.InvalidateNext(SizeClass)
ZF = 1
return Head, Next

ZF = 0
return NULL, NULL

def mchdpush(SizeClass, NewHead):
FoundEntry = Cache.FindSizeClass(SizeClass)
if FoundEntry:
CurrHead = Cache.GetHead(SizeClass)
Cache.SetNext(SizeClass, CurrHead)
Cache.SetHead(SizeClass, NewHead)

def mcnxtprefetch(SizeClass, NewNext):
CurrHead = Cache.GetHead(SizeClass)
CurrNext = Cache.GetNext(SizeClass)
if CurrHead and not CurrNext:
Cache.SetNext(NewNext)

elif not CurrHead:
Cache.SetHead(NewNext)

Figure 5.11: Pseudocode for linked list instrucধons.

and execution falls back on software to perform the pop (Figure 5.12). Its dual operation, mchdpush,
is invoked on the deallocation side and updates the cached Headwith the pointer being freed, shifting
the previous head to the Next slot.

Note that these instruction are merely performance optimizations meant to isolate free lists from
cache antagonists. The real free list head pointer is always valid and updated in software on both a hit
and a miss, as is any metadata (length, total size, etc.).

For a pop operation to consistently hit, we need two elements already cached. To maintain that
for differently-balanced allocation patterns (i.e., with different rates of allocations and deallocations
over time), we introduce yet another instruction, mcnxtprefetch. Conceptually, mcnxtprefetch
prefetches a memory location into the malloc cache’s Next entry, and is called after a pop hits and
moves its Next element in the Head position. In this case, a subsequent pop request can immediately

74

malloc:
; rax = size class.
; rbx = location of the head of the free list.
; rcx = returned: head element.
; rdx = returned: next head element.
; rdi = temporary.
mchdpop rcx, rdx, rax ; Search malloc cache.
je cache_fallback ; If we missed, go to fallback.
mov QWORD PTR [rbx], rdx ; Otherwise, update head.
; ... ; ... and metadata.
jmp malloc_ret

cache_fallback:
; Execute the original software.
mov rcx, QWORD PTR [rbx] ; head = *freelist->head.
mov rdx, QWORD PTR [rcx] ; next = *head.
mov QWORD PTR [rbx], rdx ; freelist->head = next.

malloc_ret:
mcnxtprefetch rax, QWORD PTR [rdx] ; Prefetch the next head.
; Clean up stack and return value.

free:
; rax = freed pointer.
; rcx = size class.
mchdpush rcx, rax ; Update malloc cache head.
; The rest of free

Figure 5.12: Integraধon of linked list instrucধons in an allocator.

hit as long as the prefetch has had enough time to return from the cache hierarchy. While not necessary
for correctness, enabling a prefetch to update the Head field of an empty cache entry aswell as the Next
field allows for the prefetch instruction to be called on amiss, and leads to higher hit rates. We assume
that in Figure 5.12. Finally, to ensure that the copies of the list elements stored in the malloc cache are
always consistent (Head always points to Next), entries with an outstanding prefetch block and do
not service pushes or pops until the prefetch comes back, or gets rolled back on a misprediction.

Core integration First, it is important to point out that the malloc cache only stores copies of list
elements for fast access – the definitive version of free lists is always in regular memory. Thus, at in-
terrupts or context switches, the whole cache can always be flushed without writebacks or correctness
concerns. Similarly, at branch mispredictions, entries from the mispredicted epoch can be discarded,
just as they would in any other long-latency unit.

Second, as part of the core, the malloc cache can potentially see instructions out-of-order. In order

75

tonot break the invariant that a cachedHead’s next pointer always points to the adjacentNext element,
our three linked list instructions are ordered with each other. We implement that by an implicit read-
write register dependency through an architecturally-invisible register, which out-of-order execution
has to observe. As discussed earlier, blocking the cache when a prefetch is outstanding is also required
to preserve the linked list invariant.

Finally, the prefetch instruction is slightly unconventional. Like a software prefetch in L1, it is al-
lowed to commit, so that it does not block subsequent code, but a result still has tomake its way from
the cache hierarchy to the malloc cache. From the core’s point of view, this is treated in a virtually
identical manner to a store, which is also allowed to commit with an outstanding memory access, but
reserves a slot in a structure (sometimes called a senior store queue), where it waits for an acknowledg-
ment from coherency controllers.

5.4.2 Sampling

The sampling code in TCMalloc (and its equivalents in jemalloc [37] and others) presents an addi-
tional opportunity to remove several additional cycles from the allocation critical path. The operation
performed by the sampler – accumulate a value and capture a stack trace at a threshold – is precisely
what a performance counter does and what the perf_events subsystem performs when the perfor-
mance monitoring unit (PMU) raises an interrupt on an event. We propose dedicating a hardware
performance counter for sampling allocation sizes, which entirely removes a conditional branch on
the fast path. Stack traces are only required when a user explicitly requests them, and this can be han-
dled through the perf_events interface as it typically is currently.

Themain difference between our proposal and current performance counters is that it will need to
increment by the value of a register, which holds the requested allocation size. As a result, the PMU
will need access to the actual register file (or just the ROB), instead of the more typical occupancy
statistics. As the design of a performance counter is fairly straightforward, we will focus on the design
of the malloc cache for the remainder of this text.

5.5 Methodology

To evaluateMallacc, we ran simulations on two systems – a conventional aggressive out-of-order pro-
cessor as a baseline, and the sameprocessor equippedwithMallacc, as described in theprevious section.
We also performed limit studies on our optimizations for an optimistic upper bound of speedup. To
do so, we ran simulations in which the instructions comprising the three steps from Section 5.3.3 are

76

simply ignored by performance simulation.

Microbenchmarks To better understand allocator performance and the effect from our optimiza-
tions, we first constructed a suite of microbenchmarks to stress certain aspects of the fast path code.
They are divided into two categories based on their allocation patterns: strided andGaussian. Strided
benchmarks allocate in increments of N bytes, up to some value, while Gaussian benchmarks issue
allocation requests by drawing from normal distributions. All strided benchmarks fit perfectly in L1
caches and represent the very best baseline cases. Gaussian benchmarks allocate more, have subse-
quently larger working sets and more interesting caching behavior.

• tp: A throughput-oriented microbenchmark. It performs a series of back-to-back malloc
and free calls, which always hit in thread caches. Each iteration strides through request sizes
in increments of 16 bytes from 32 to 512 bytes.

• tp_small: Same as above, but we only stride up to 128 bytes. This ensures that: (i) each iter-
ation accesses a different free list; and (ii) we only use four size classes. This microbenchmark
captures the fastest possible fast path on the allocation side.

• sized_deletes: A variant of tp_small that uses eight size classes and sized deletes to speed
up deallocation.

• gauss: A more realistic allocation pattern. gauss chooses randomly between small (16-64
byte) and relatively large (256-512 byte) allocations. 90% of allocations are chosen from the
small set to represent typical behaviors for strings and small lists. Within each range, the size is
selected from a Gaussian distribution. However, no objects are ever freed, which renders free
lists virtually useless. This is a lowerboundon the gains fromany free-list centric optimizations.

• gauss_free: Same allocationbehavior asgauss, but it randomly frees allocatedmemorywith
50% probability.

• antagonist: Same allocation behavior as gauss_free, but after every allocation, invokes
a simulator callback which evicts the less used half of each set of the L1 and L2 data caches.
This mimics the behavior of an application that strides through a large working set, without
simulating the millions of instructions required for the stride.

Allmicrobenchmarks explicitlyminimize thenumberof instructionsbetween allocator calls (which
is important when each call is only 40 instructions) and are run with sufficient warmup time.

77

cycle error (%)
gauss 5.32

gauss_free 3.67
tp 12.3

tp_small 5.92
sized_delete 4.21

Average 6.28

Table 5.1: Simulator validaধon on malloc microbenchmarks.

Macrobenchmarks Weevaluate our optimizations on the four benchmarks fromSPECCPU2006
that use the system allocator and two workloads that are more likely to be found in datacenters. For
datacenter-like workloads, we use the xapian open-source search engine and the masstree [83] key-
value store. xapian is configured as a leaf node and performs searches on an index of 1.6 million
English Wikipedia pages, as well as on a smaller index of the same number of page abstracts. The set
of queries focus on popularWikipedia pages, obtained fromWikipedia’s weekly top 25 article digests.
For masstree, we run its wcol1 and same performance tests. For SPEC benchmarks, we simulate
several SimPoints [112] of 1B instructions each per benchmark, for xapianwe skip query parsing and
only simulate query execution, and run masstree from start until completion.

Allocator WeuseTCMalloc at revision 050f2d. Tomodel our proposed instructions, we annotate
potential optimization sites in TCMalloc code by inserting special x86 marker instructions. Later, in
simulationwe replace these instructions with our proposals. Thesemarker instructions were carefully
chosen to a) not already appear in TCMalloc and b) have the same number and type of operands as
our proposed instructions. This is done so the compiler does not optimize surrounding code sub-
optimally.

Compiler All benchmarks and allocators are built with GCC 6.1 at -O3 with
-fsized-deallocation.

Simulator All experiments are run using the XIOSim simulator [60], configured for an aggressive
out-of-order core modeled after an Intel Haswell microarchitecture. Since we are evaluating malloc
fast path code, we validated our performance model on microbenchmarks against a Haswell desktop
processor and achieved a mean error of 6.3% (Table 5.1). We omitted antagonist because it uses a
simulator callback to emulate cache trashing and does not run natively.

78

0 10 20 30 40 50 60
tcmalloc time improvement (%)

Geomean

xapian.pages

xapian.abstracts

masstree.wcol1

masstree.same

483.xalancbmk

471.omnetpp

465.tonto

400.perlbench

All optimizations Limit study

Figure 5.13: Improvement of ধme spent in the allocator.

5.6 Results

5.6.1 Allocator time speedup

Figure 5.13 shows the reduction of time spent in allocator code for our SPEC and cloud workloads.
These results use a 32-entry malloc cache to demonstrate the potential of our accelerator; we will later
present a cache size sensitivity study. On the total time spent in the allocator (including both malloc
and free), Mallacc is able to achieve an average of 18% speedup, out of 28% projected by the limit
study. Most of that is due to improvements on malloc calls, which see an average of nearly 30%
speedup (Figure 5.14). The amount of speedup achieved is highly correlated with the fraction of time
on the fast path shown in prior sections. We call out three particular benchmarks to get a deeper
understanding of the causes for improvement, or lack thereof.

Xapian xapian uses a very small set of size classes, and its malloc calls almost exclusively take the
fast path. As shown in Section 5.3, this is true whether it is searching over an index of small documents
(abstracts) or an index of large documents (full articles). This makes xapian a great candidate for
fast path acceleration and Figure 5.14 confirms that – the malloc cache provides over 40% speedup on
malloc calls.

Figure 5.15 implies that the causes for this improvement are the latency-reducingportionsofMallacc–

79

0 10 20 30 40 50 60
malloc() time improvement (%)

Geomean

xapian.pages

xapian.abstracts

masstree.wcol1

masstree.same

483.xalancbmk

471.omnetpp

465.tonto

400.perlbench

Figure 5.14: Improvement in ধme spent on malloc() calls (both fast and slow paths).

size class lookups, sampling, and, to a much smaller degree, linked list caching. It is a distribution of
time im malloc calls over the call duration for three cases: the baseline implementation, our limit
study, and Mallacc. The baseline case is already very fast – with virtually all calls between 20 and 40
cycles, not unlike our striding microbenchmarks, which implies very small effects from cache antago-
nism. Our best-case latency optimizations manage to reduce the average call length almost twofold,
withmedian calls now at 13 cycles, and a distribution very close to that of the limit study. The size class
cache in particular is very effective because of the small number of size classes used by xapian.

Xalancbmk As demonstrated by Figure 5.2, xalancbmk uses the most number of size classes, re-
quiring 30 size classes for 90% coverage. Nevertheless, it has enough size class locality to also benefit
from Mallacc, achieving over 40% speedup on malloc calls. Figure 5.16 shows the malloc call dura-
tion distribution for this benchmark. The first spike corresponds to the fastest of fast path calls, where
the effects are similar to those seen in xapian. The next large spike, between 20 and 70 cycles includes
fast path calls that missed in L1 and L2 caches and had to go to L3 (34 cycles latency on Haswell). The
malloc cache is particularly beneficial in this region because of its cache isolation properties. Finally,
note that Mallacc only improves fastpath behavior without affecting slower calls.

Masstree masstree has the lowest overall malloc speedup of all the workloads we tested. As we
pointed out in Section 5.3.2, this is because the masstree performance tests never free any memory,
so many malloc calls must request large amounts from the page allocator. The little time spent on

80

100 101 102 103 104 105

call duration (cycles)

0

10

20

30

40

50

60

70

T
im

e
 i
n
 c

a
lls

 (
P
D

F
%

)

xapian.query_wiki_pages

Baseline malloc

All optimizations malloc

Limit study malloc

Figure 5.15: Xapian sees a significant improvement on already-fast calls.

the fast path results in an allocator time improvement of just 5%. However, a real deployment of
masstree would inevitably free more memory, and likely have significantly higher thread-cache use,
so we would expect different results.

5.6.2 Sensitivity to malloc cache size

The malloc cache is a part of the core, where silicon real estate is expensive, so we must maximize our
performance gains with the least number of entries. To understand the effects of malloc cache sizing,
we sweep malloc cache sizes from 2 to 32 on our suite of microbenchmarks. The results of this sweep
are shown in Figure 5.17. We non-surprisingly find that too small of a cache will result in slowdown
rather than speedup. At ahigh enoughmiss rate, not only is executiongoing through the fallbackpaths
(the same instructions that we started optimizing away), but also with the additional cache lookups to
determine that. However, once the cache is large enough to capture themajority of allocation requests,
we quickly achieve speedup. One example are the strided benchmarks, which have no size class locality
until we can capture all of their requests, resulting in very sharp jumps. sized_deletes, tp, and
tp_small use 8, 25, and 4 size classes, respectively, andwe see that the speedup inflection points occur
precisely at those malloc cache sizes. The Gaussian benchmarks have more size class locality because
they are more likely to allocate small size classes, which results in a more gradual increase in speedup
until cache size 12, because Gaussian benchmarks allocate from 13 possible size classes.

Once the malloc cache is sufficiently sized, Mallacc can achieve within 10-20% of ideal speedup.
The lone exception here is tp. For certain points of execution, this microbenchmark starts allocating
and deallocating from the same size class in a very tight loop (≈ 30 cycles for a malloc-free pair). In

81

100 101 102 103 104 105

call duration (cycles)
0

10

20

30

40

50

Ti
m

e
in

 c
al

ls
(P

DF
 %

)

483.xalancbmk.ref
Baseline malloc
Limit study malloc
All optimizations malloc

Figure 5.16: Xalan benefits both from latency reducধon and cache isolaধon.

this case, the malloc cache blocks until each of the malloc prefetches returns with a value, causing
the slowdown. The prefetch instruction is based on exactly the opposite assumption – that there is
enough time between requests to prefetch for the next one and this slowdown is expected. None of
our macro workloads exhibit slowdown due to prefetch blocking.

It is important to remember that these microbenchmarks are designed to stress the fast path of
malloc, not to exhibit realistic allocation behavior. As we showed in Figure 5.6, most benchmarks use
a very small number of size classes. We swept malloc cache sizes and only xalancbmk is meaningfully
affected by a smaller size – it loses 6 percentage points of allocator time improvement between 32 and
16. Because of that, we consider a size of 16 sufficient for most workloads.

5.6.3 Full program speedup

Finally, we present improvements on full benchmark execution time, not only allocator time. This
speedup is obviously bounded by the total time each benchmark spends in the allocator itself. Fig-
ure 5.18 shows these fractions for our workloads, compared to published data from Google’s datacen-
ters [58]. Most of our workloads spend a much lower fraction of time in allocator code, so we can
expect small gains. As mentioned before, the masstree performance tests have very high malloc
time because they exclusively allocate memory and never free any, resulting in many slow path calls.

Table 5.2 shows full program speedup for workloads where the measured speedup through simu-
lation is statistically significant. For them, the mean program speedup is 0.49%, with a maximum of
0.78% for perlbench.

Because total speedup tends to be small, run-to-run variance on some of the workloads is enough

82

ubench.antagonist

ubench.gauss

ubench.gauss_free

ubench.sized_deletes
ubench.tp

ubench.tp_small
0.0

0.5

1.0

1.5

2.0

tc
m

a
llo

c
sp

e
e
d
u
p

2

4

6

8

12

16

20

24

28

32

Limit

Figure 5.17: Effect of cache size on overall tcmalloc speedup.

to mask out any improvements we achieved with the malloc accelerator. More precisely, we do not
include theworkloads forwhich a single-sided Student’s T-test fails to reject a hypothesis of slowdown
with 95+% probability. Note that for these workloads, the speedup in allocator code is still statistically
significant, as shown by the low error bars in Figure 5.13. It is simply more difficult to reliably estimate
its effects on full program execution time due to the high variance.

5.6.4 Area cost of Mallacc

Mallacc consists of the malloc cache and a performance counter. The malloc cache requires 152 bits of
storage per entry. Because the malloc cache is fully associative, it must be implemented using content
addressablememories (CAMs) and standard SRAM.CAMcells canbe significantly larger thanSRAM
cells, but the malloc cache requires so few bits that this difference is negligible. We do not lay out the
malloc cache to provide precise area estimates, but it is so small that a reasonable upper bound will
suffice. Also, we will ignore the area overhead of the performance counter, since it is just one 64-bit
register per hardware thread.

Themalloc cache requires three CAMarrays to implement the index and size class search and LRU
functions, while the rest of the data – allocated size, list pointers, and valid bits – can be stored in
an SRAM array. The index CAM requires 24 bits per entry to store two 12-bit indices, while the size
class CAM requires 8 bits per entry to store size classes, and the LRUCAM stores log2 n bits per entry,
wheren is the number of entries. The head pointer SRAMarray requires 117 bits per entry to store two

83

0 1 2 3 4 5 6 7 8
Time spent in tcmalloc (%)

xapian.pages

xapian.abstracts

masstree.wcol1

masstree.same

483.xalancbmk

471.omnetpp

465.tonto

400.perlbench

WSC (Kanev et al.)

18.6%

Figure 5.18: Fracধon of ধme spent in the allocator.

48-bit pointers (currently, x86 only uses the lower 48-bits of 64-bit addresses), 20 bits for the allocated
size, plus a valid bit. Our analysis has shown 16 entries to be sufficient for the workloads analyzed; this
means the CAMs and SRAM are 72 bytes and 234 bytes, respectively. We also need a shifter and adder
for the index computation.

We usedCACTI 6.5+ [73] to estimate the sizes of these four arrays in 28nm. TheCAMs collectively
occupy 873µm2 and the SRAMoccupies 346µm2 for a total of 1219µm2. This is certainly a pessimistic
upper bound; Jeloka et al. recently demonstrated a 512 byte configurableCAMarray occupyingmerely
1208 in 28nm µm2 [116]. We scale published area numbers of shifters and adders from accelerator
models [110] by ITRS technology scaling factors and estimate a total area of 265 µm2, bringing our
upper bound to about 1500 µm2.

Consider this area in the context of a typical high-performance CPU. An Intel Haswell core mea-
sures 26.5 mm2 (including private L1 and L2 caches). If integrated into a Haswell CPU, Mallacc is
merely 0.006% of the core area. Pollack’s Rule states that historically, the performance increase of a
chip is approximately proportional to the square root of the increase in complexity, where complex-
ity refers to area [13]. By this rule, an area increase of 0.006% would only produce 0.003% speedup.
In contrast, Mallacc demonstrates average speedup of 0.49%, which is over 150× greater. It is clear
that Mallacc far surpasses the “1% performance for 1% area” rule of thumb that has informally guided
processor development over the last few decades.

5.7 Conclusion

Dynamicmemory allocation is awidely used programming paradigm that has seen decades of software
research and optimization. Recent work has discovered that despite being well-optimized, memory
allocation can consume a significant percentage of datacenter cycles. In this work, we presentMallacc,

84

Speedup Stddev p-value
400.perlbench 0.78% 0.05% <0.001

465.tonto 0.35% 0.08% 0.025
483.xalancbmk 0.27% 0.06% 0.043
masstree.same 0.49% 0.05% 0.002

xapian.abstracts 0.55% 0.05% 0.002

Table 5.2: Full program speedup.

a tiny in-core hardware block for accelerating dynamic memory allocation. Mallacc does not imple-
ment a new allocator; rather, it is designed to accelerate various operations that are common to many
existing high-performance allocators. Unlike many hardware accelerators that design for maximum
throughput, Mallacc is designed to minimize latency. We show that Mallacc can accelerate the most
commonly observed malloc behavior – fast allocation requests that only take 20-30 cycles onmodern
processors – by up to 50%, while consuming less than 1500µm2 of silicon area, and that integrating
Mallacc into a CPU provides speedups that greatly outstrip “1% performance for 1% area”, a rule of
thumb that has for decades informally guided high-performance processor design.

85

6
Conclusion

With the increasing popularity of online and cloud services, designing andmanaging the architectures
for warehouse-scale machines is becoming ever more relevant. The vast scale of WSCs has enabled
significant improvements in the total cost per computation, but has also increased the startup cost of
performing datacenter research. The first portions of this dissertation address this issue by character-
izing real, live, production-grade WSCs over several years by and exposing several opportunities for
improvement in both performance and power efficiency.

We have shown that WSC workloads are neither completely CPU- nor IO-bound. Instead, they
mix bursts of computation with short periods of sleep, emphasizing the need for comprehensive sleep
state selection algorithms. For them, additional power savings are possible while not sleeping, too, but
only after a careful and workload-specific frequency scaling policy.

We have also demonstrated the large diversity in WSCs, both in terms of the applications them-
selves, and within each individual one. Despite the large variance, we can identify a commonmicroar-
chitectural signature for WSC applications – low IPC, large instruction footprints, bimodal ILP and
a preference for latency over bandwidth – which should influence future processor designs for the
datacenter.

In the long term, as technology scaling slows down, specialized architectures are a clear path to
efficiency gains in the datacenter. However, their adoption in WSCs so far has been limited. Our
profiling results attribute this to the very wide diversity in applications in a typical WSC. By profiling
across binary boundaries, we have identified common low-level functions (“datacenter tax”), which

86

show potential for specialized hardware in future server SoCs. Such “broad” accelerators have very
different design constraints from typical specialized blocks. The benefits from each single one is lim-
ited, but so is the overhead it incurs, so a large collection of broad accelerators can still be a significant
net efficiency win.

We demonstrated the feasibility of the broad acceleration approach by designing a specialized block
for dynamicmemory allocation–one of themost popular (and perhapsmost heavily optimized) com-
ponents of the datacenter tax. Our prototype implementation improvesmalloc latency byup to 50%,
while incurring a negligible 0.006% silicon area overhead. We believe this will spur additional research
interest in designing collections of broad accelerators, and their eventual adoption in warehouse-scale
systems-on-chip.

87

References

[1] J. H. Ahn, S. Li, O. Seongil, and N. P. Jouppi, “McSimA+: A manycore simulator with
application-level+ simulation anddetailedmicroarchitecturemodeling,” inPerformanceAnal-
ysis of Systems and Software (ISPASS), 2013.

[2] H.Amur et al., “Idlepower: Application-awaremanagement of processor idle states,”MMCS,
in conjunction with HPDC, 2008.

[3] D.G.Andersen, J. Franklin,M.Kaminsky, A. Phanishayee, L.Tan, andV.Vasudevan, “FAWN:
A fast array of wimpy nodes,” inOperating systems principles (SOSP), 2009.

[4] J. Anderson, L. Berc, G. Chrysos, J. Dean, S.Ghemawat, J.Hicks, S.-T. Leung,M. Lichtenberg,
M. Vandevoorde, C. A. Waldspurger et al., “Transparent, low-overhead profiling on modern
processors,” inWorkshop on Profile and Feedback-Directed Compilation, 1998.

[5] M. Annavaram, J. M. Patel, and E. S. Davidson, “Call graph prefetching for database applica-
tions,” Transactions of Computer Systems, 2003.

[6] T. M. Austin and G. S. Sohi, “High-bandwidth address translation for multiple-issue proces-
sors,” in Computer Architecture (ISCA), 1996.

[7] L. Barroso and U. Hölzle, “The case for energy-proportional computing,” IEEE Computer,
2007.

[8] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer: an introduction to
the design of warehouse-scale machines,” Synthesis Lectures on Computer Architecture, 2013.

[9] L. A. Barroso, J. Dean, and U. Hölzle, “Web search for a planet: The google cluster architec-
ture,” IEEE Micro, 2003.

[10] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson, “Hoard: A Scalable Memory
Allocator for Multithreaded Applications,” in Proceedings of the Symposium on Architectural
Support for Programming Languages and Operating Systems, 2000.

88

[11] M. Bligh et al., “Linux kernel debugging on google-sized clusters,” inLinux Symposium, 2007.

[12] P. Bohrer et al., “The case for power management in web servers,” Power aware computing,
2002.

[13] S. Borkar and A. A. Chien, “The future of microprocessors,” Communications of the ACM,
2011.

[14] K. Brownell, “Architectural Implications of Automatic Parallelization With HELIX-RC,”
Ph.D. dissertation, Harvard University, 2015.

[15] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” 1997.

[16] P. Calafiura, S. Eranian, D. Levinthal, S. Kama, and R. A. Vitillo, “GOoDA: The generic opti-
mization data analyzer,” in Journal of Physics: Conference Series, 2012.

[17] H. Cam, M. Abd-El-Barr, and S. M. Sait, “A high-performance hardware-efficient memory
allocation technique and design,” in Computer Design (ICCD), 1999.

[18] S. Campanoni, G. Agosta, S. Crespi Reghizzi, and A. Di Biagio, “A highly flexible, parallel
virtual machine: design and experience of ILDJIT,” Software: Practice and Experience, 2010.

[19] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, D. Brooks, and G.-Y. Wei, “HELIX-RC:
AnArchitecture-Compiler Co-Design forAutomatic Parallelization of Irregular Programs,” in
Computer Architecture (ISCA), 2014.

[20] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the Level of Abstraction
for Scalable and Accurate Parallel Multi-Core Simulations,” inHigh Performance Computing,
Networking, Storage and Analysis (SC), 2011.

[21] N. Chachmon, D. Richins, R. Cohn, M. Christensson, W. Cui, and V. J. Reddi, “Simulation
and analysis engine for scale-out workloads,” in International Conference on Supercomputing
(ICS), 2016.

[22] F.Chang et al., “Bigtable: Adistributed storage system for structureddata,”ACMTransactions
on Computer Systems (TOCS), 2008.

[23] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system for structured data,” in
Operating Systems Design and Implementation (OSDI), 2006.

89

[24] J. M. Chang and E. F. Gehringer, “A high performance memory allocator for object-oriented
systems,” Transactions on Computers, 1996.

[25] J. M. Chang, W. Srisa-An, and C.-T. Lo, “Architectural support for dynamic memory manage-
ment,” in Computer Design (ICCD), 2000.

[26] M. Charney, “XED: An x86 encoder/decoder,” http://goo.gl/ORn5JH.

[27] D. Chen, N. Vachharajani, R. Hundt, S.-w. Liao, V. Ramasamy, P. Yuan, W. Chen, and
W. Zheng, “Taming hardware event samples for FDO compilation,” in Code generation and
optimization (CGO), 2010.

[28] G. O. Collins Jr, “Experience in automatic storage allocation,” Communications of the ACM,
1961.

[29] W. Comfort, “Multiword list items,” Communications of the ACM, 1964.

[30] G. Contreras, M. Martonosi, J. Peng, R. Ju, and G.-Y. Lueh, “XTREM: a power simulator for
the Intel XScale core,” inACM Sigplan Notices, 2004.

[31] Z.Dai,N.Ni, and J. Zhu, “A 1 cycle-per-byteXMLparsing accelerator,” inField Programmable
Gate Arrays, 2010.

[32] A. de Melo, “The new linux “perf” tools,” in Linux Kongress, 2010.

[33] A. C. de Melo, “The new linux ‘perf’ tools,” in Slides from Linux Kongress, 2010.

[34] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM, 2013.

[35] F. Duarte and S. Wong, “Cache-based memory copy hardware accelerator for multicore sys-
tems,” IEEE Transactions on Computers, 2010.

[36] J. Evans, “A Scalable Concurrent malloc Implementation for FreeBSD,” in Proceedings of the
Technical BSD Conference, 2006.

[37] ——, “Scalable memory allocation using jemalloc,” https://goo.gl/rvl2oK, 2011.

[38] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A top-down approach to architecting
cpi component performance counters,” IEEE Micro, 2007.

90

http://goo.gl/ORn5JH
https://goo.gl/rvl2oK

[39] M. Ferdman, B. Falsafi, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,
A. D. Popescu, and A. Ailamaki, “Clearing the clouds,” inArchitectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2012.

[40] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,” in Microarchitecture
(MICRO), 2011.

[41] T. Ferreira, R. Matias, A. Macedo, and L. Araujo, “An experimental study on memory allo-
cators in multicore and multithreaded applications,” in Parallel and Distributed Computing,
Applications and Technologies (PDCAT), 2011.

[42] S. Ghemawat and P. Menage, “TCMalloc: Thread-caching malloc,” http://goog-perftools.
sourceforge.net/doc/tcmalloc.html, 2007.

[43] Google, “Bazel,” http://bazel.io/.

[44] ——, “Efficiency: How we do it,” https://www.google.com/about/datacenters/efficiency/
internal/.

[45] ——, “gRPC,” http://grpc.io/.

[46] ——, “Protocol buffers,” https://developers.google.com/protocol-buffers/.

[47] J.Hamilton, “Cooperative expendablemicro-slice servers (CEMS): low cost, low power servers
for internet-scale services,” in Conference on Innovative Data Systems Research (CIDR), 2009.

[48] ——, “Counting servers is hard,” http://perspectives.mvdirona.com/2013/07/
counting-servers-is-hard/, 2013.

[49] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach, 2012.

[50] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch, J. Mars, L. Tang, and R. G.
Dreslinski, “Adrenaline: Pinpointing and reining in tail queries with quick voltage boosting,”
inHigh Performance Computer Architecture (HPCA), 2015.

[51] C.-H. Hsu and W.-c. Feng, “Effective dynamic voltage scaling through CPU-boundedness de-
tection,” inWorkshop on Power-Aware Computer Systems, 2004.

[52] C. Isci et al., “Live, Runtime PhaseMonitoring and Prediction on Real Systems with Applica-
tion to Dynamic Power Management,” inMicroarchitecture (MICRO), 2006.

91

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://bazel.io/
https://www.google.com/about/datacenters/efficiency/internal/
https://www.google.com/about/datacenters/efficiency/internal/
http://grpc.io/
https://developers.google.com/protocol-buffers/
http://perspectives.mvdirona.com/2013/07/counting-servers-is-hard/
http://perspectives.mvdirona.com/2013/07/counting-servers-is-hard/

[53] A. Jaleel, “Memory characterization of workloads using instrumentation-driven simulation–a
Pin-based memory characterization of the SPEC CPU2000 and SPEC CPU2006 benchmark
suites,” Intel Corporation, VSSAD, 2007.

[54] A. Jaleel, J.Nuzman,A.Moga, S.C. Steely Jr, and J. Emer, “HighPerformingCacheHierarchies
for Server Workloads,” inHigh-Performance Computer Architecture (HPCA), 2015.

[55] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search using mobile cores: quanti-
fying and mitigating the price of efficiency,” Computer Architecture (ISCA), 2010.

[56] Z. Jia, L.Wang, J. Zhan, L. Zhang, and C. Luo, “Characterizing data analysis workloads in data
centers.” inWorkload characterization (IIWSC), 2013.

[57] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim, “Measuring interference between live
datacenter applications,” inHigh Performance Computing, Networking, Storage and Analysis
(SC), 2012.

[58] S. Kanev, J. P. Darago, K.Hazelwood, T. Parthasarathy, Ranganathan amdMoseley, G.-Y.Wei,
and D. Brooks, “Profiling a warehouse-scale computer,” in Computer Architecture (ISCA),
2015.

[59] S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks, “Tradeoffs between Power Management
and Tail Latency in Warehouse-Scale Applications,” in Workload Characterization (IISWC),
2014.

[60] S. Kanev, G.-Y. Wei, and D. Brooks, “XIOSim: power-performance modeling of mobile x86
cores,” in Low-power electronics and design (ISLPED), 2012.

[61] S. Kaxiras andM.Martonosi, “Computer Architecture Techniques for Power-Efficiency,” Syn-
thesis Lectures on Computer Architecture, 2008.

[62] W.Kim et al., “System level analysis of fast, per-coreDVFSusing on-chip switching regulators,”
inHigh Performance Computer Architecture (HPCA), 2008.

[63] K. C. Knowlton, “A fast storage allocator,” Communications of the ACM, vol. 8, no. 10, 1965.

[64] A. Kolli, A. Saidi, and T. F. Wenisch, “RDIP: Return-address-stack Directed Instruction
Prefetching,” inMicroarchitecture (MICRO), 2013.

92

[65] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid, “Server engineering insights for large-scale
online services,” IEEE Micro, 2010.

[66] S. Kumar, A. Shriraman, V. Srinivasan, D. Lin, and J. Phillips, “SQRL: Hardware Accelerator
for Collecting Software Data Structures,” in Parallel architectures and compilation (PACT),
2014.

[67] E. Le Sueur and G. Heiser, “Slow down or sleep, that is the question,” in USENIX Annual
Technical Conference (USENIX ATC), 2011.

[68] B. C. Lee, “Datacenter Design and Management: A Computer Architect’s Perspective,” Syn-
thesis Lectures on Computer Architecture, 2016.

[69] S.Lee,T. Johnson, andE.Raman, “Feedbackdirectedoptimizationof tcmalloc,” inProceedings
of the workshop on Memory Systems Performance and Correctness, 2014.

[70] O. Lempel, “2nd generation intel core processor family: Intel core i7, i5 and i3,” inHot Chips,
2011.

[71] J. Li, N. K. Sharma, D. R. Ports, and S. D. Gribble, “Tales of the tail: Hardware, os, and
application-level sources of tail latency,” in Symposium on Cloud Computing (SoCC), 2014.

[72] P. Li, J. L. Shin, G. Konstadinidis, F. Schumacher, V. Krishnaswamy, H. Cho, S. Dash,
R. Masleid, C. Zheng, Y. David Lin et al., “A 20nm 32-Core 64MB L3 cache SPARC M7 pro-
cessor,” in Solid-State Circuits Conference (ISSCC), 2015.

[73] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “Mcpat:
an integrated power, area, and timing modeling framework for multicore and manycore ar-
chitectures,” in Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2009.

[74] W.Li, S. P.Mohanty, andK.Kavi, “Apage-basedhybrid (software-hardware) dynamicmemory
allocator,” Computer Architecture Letters (CAL), 2006.

[75] W. Li, M. Rezaei, K. Kavi, A. Naz, and P. Sweany, “Feasibility of decoupling memorymanage-
ment from the execution pipeline,” Journal of Systems Architecture, 2007.

[76] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt, “Understanding
and designing new server architectures for emerging warehouse-computing environments,” in
Computer Architecture (ISCA), 2008.

93

[77] D. Lo et al., “Towards energy proportionality for large-scale latency-critical workloads,” in
Computer Architecture (ISCA), 2014.

[78] G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A cycle-level simulator for highly detailed
microarchitecture exploration,” in Performance Analysis of Systems and Software (ISPASS),
2009.

[79] P. Lotfi-Kamran, B.Grot,M. Ferdman, S.Volos,O.Kocberber, J. Picorel, A.Adileh,D. Jevdjic,
S. Idgunji, E. Ozer et al., “Scale-out processors,” in Computer Architecture (ISCA), 2012.

[80] Y. Lu et al., “Quantitative comparison of powermanagement algorithms,” inDesign, Automa-
tion and Test in Europe (DATE), 2000.

[81] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood, “Pin: building customized program analysis tools with dynamic instrumenta-
tion,” in Program Language Design and Implementation (PLDI), 2005.

[82] K. T.Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi, andM.Horowitz, “To-
wards energy-proportional datacenter memory with mobile DRAM,” Computer Architecture
(ISCA), 2012.

[83] Y. Mao, E. Kohler, and R. Morris, “Cache craftiness for fast multicore key-value storage,” in
EuroSys, 2012.

[84] J. Mars and L. Tang, “Whare-map: Heterogeneity in ”homogeneous” warehouse-scale com-
puters,” in Computer Architecture (ISCA), 2013.

[85] J.Mars, L. Tang, R.Hundt, K. Skadron, andM. L. Soffa, “Bubble-up: Increasing utilization in
modernwarehouse scale computers via sensible co-locations,” inMicroarchitecture (MICRO),
2011.

[86] D. Meisner et al., “Bighouse: A simulation infrastructure for data center systems,” in Perfor-
mance Analysis of Systems and Software (ISPASS), 2012.

[87] D.Meisner, C.M. Sadler, L.A. Barroso,W.-D.Weber, andT. F.Wenisch, “Powermanagement
of online data-intensive services,” in Computer Architecture (ISCA), 2011.

[88] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis,
“Dremel: interactive analysis of web-scale datasets,” Very Large Data Bases (VLDB), 2010.

94

[89] D. Namiot and M. Sneps-Sneppe, “On micro-services architecture,” Open Information Tech-
nologies, 2014.

[90] J. Ouyang, H. Luo, Z. Wang, J. Tian, C. Liu, and K. Sheng, “FPGA implementation of GZIP
compression and decompression for IDC services,” in Field-Programmable Technology (FPT),
2010.

[91] L. Page et al., “The PageRank citation ranking: bringing order to the web.” 1999.

[92] V. Pallipadi et al., “cpuidle: Do nothing, efficiently,” in Linux Symposium, 2007.

[93] M.P.Papazoglou andW.-J.VanDenHeuvel, “Service oriented architectures: approaches, tech-
nologies and research issues,” The VLDB journal, 2007.

[94] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi, “Pinpointing rep-
resentative portions of large intel® itanium® programs with dynamic instrumentation,” in
Microarchitecture (MICRO), 2004.

[95] D. A. Patterson, “The data center is the computer,” Communications of the ACM, 2008.

[96] R. Pike et al., “Interpreting the data: Parallel analysis with Sawzall,” Scientific Programming,
2005.

[97] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-
maeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al., “A reconfigurable fabric for accelerating
large-scale datacenter services,” in Computer Architecture (ISCA), 2014.

[98] W.Qadeer, R.Hameed,O. Shacham, P.Venkatesan, C.Kozyrakis, andM.A.Horowitz, “Con-
volution engine: balancing efficiency& flexibility in specialized computing,” inComputer Ar-
chitecture (ISCA), 2013.

[99] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-overhead, high-
performance, runtimemechanism topartition shared caches,” inMicroarchitecture (MICRO),
2006.

[100] R. Raghavendra et al., “No power struggles: Coordinated multi-level power management for
the data center,” inArchitectural Support for Programming Languages and Operating Systems
(ASPLOS), 2008.

95

[101] K. Rajamani et al., “Power management solutions for computer systems and datacenters,” in
Low Power Electronics and Design (ISLPED), 2008.

[102] K.K.Rangan et al., “Threadmotion: fine-grainedpowermanagement formulti-core systems,”
in Computer Architecture (ISCA), 2009.

[103] B. Reagen, P.Whatmough, R. Adolf, S. Rama,H. Lee, S. K. Lee, J.M.Hernández-Lobato, G.-
Y. Wei, and D. Brooks, “Minerva: Enabling low-power, highly-accurate deep neural network
accelerators,” in Computer Architecture (ISCA), 2016.

[104] C. Reiss et al., “Heterogeneity and dynamicity of clouds at scale,” in Symposium on Cloud
Computing (SoCC), 2012.

[105] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-Wide Profiling: A Con-
tinuous Profiling Infrastructure for Data Centers,” IEEE Micro, 2010.

[106] E. Rotem et al., “Power-management architecture of the Intel microarchitecture code-named
Sandy Bridge,” IEEE Micro, 2012.

[107] D. Sanchez and C. Kozyrakis, “ZSim: fast and accurate microarchitectural simulation of
thousand-core systems,” Computer Architecture (ISCA), 2013.

[108] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R.Ausavarungnirun, G. Pekhimenko, Y. Luo,O.Mutlu,
P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “RowClone: Fast and Energy-efficient in-
DRAM Bulk Data Copy and Initialization,” inMicroarchitecture (MICRO), 2013.

[109] Y. S. Shao, “Design and modeling of specialized architectures,” Ph.D. dissertation, Harvard
University, 2016.

[110] Y. S. Shao, B.Reagen,G.-Y.Wei, andD.Brooks, “TheAladdinApproach toAcceleratorDesign
and Modeling,” IEEE Micro, 2015.

[111] T. Sherwood, E. Perelman,G.Hamerly, andB.Calder, “Automatically characterizing large scale
program behavior,” in Computer Architecture (ISCA), 2002.

[112] ——, “Automatically characterizing large scale program behavior,” in Computer architecture
(ISCA), 2002.

[113] V. Spiliopoulos et al., “Green governors: A framework for Continuously Adaptive DVFS,”
International Green Computing Conference and Workshops, 2011.

96

[114] M. Stansberry and J. Kudritzki, “Uptime institute 2014 data center industry survey,” Uptime
Institute Survey, 2014.

[115] C. Stephenson, “Newmethods for dynamic storage allocation (fast fits),” inOperating systems
principles (SOSP), 1983.

[116] Supreet Jeloka and Naveen Bharathwaj Akesh and Dennis Sylvester and David Blaauw, “A
28nmConfigurableMemory (TCAM/BCAM/SRAM)Using Push-Rule 6TBit Cell Enabling
Logic-in-Memory,” IEEE Journal of Solid-State Circuits, vol. 51, no. 4, 2016.

[117] M. Tadman, “Fast-fit: A new hierarchical dynamic storage allocation technique,”Master’s the-
sis, 1978.

[118] J. VanLunteren, T. Engbersen, J. Bostian, B. Carey, andC. Larsson, “XML accelerator engine,”
inWorkshop on High Performance XML Processing, 2004.

[119] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale
cluster management at Google with Borg,” inEuropean Conference on Computer Systems (Eu-
roSys), 2015.

[120] D. Wakabayashi, “Apple to build data command center in Arizona,” The Wall Street Journal,
2015.

[121] P. R.Wilson,M. S. Johnston,M.Neely, andD. Boles, “Dynamic Storage Allocation: A Survey
and Critical Review,” in International Workshop on Memory Management, 1995.

[122] D. Wong and M. Annavaram, “Knightshift: Scaling the Energy Proportionality Wall through
Server-level Heterogeneity,” inMicroarchitecture (MICRO), 2012.

[123] Q. Wu et al., “A Dynamic Compilation Framework for Controlling Microprocessor Energy
and Performance,” inMicroarchitecture (MICRO), 2005.

[124] R. E.Wunderlich, T. F.Wenisch, B. Falsafi, and J. C.Hoe, “SMARTS:Acceleratingmicroarchi-
tecture simulation via rigorous statistical sampling,” in Computer Architecture (ISCA), 2003.

[125] A. Yasin, “A Top-Down method for performance analysis and counters architecture,” Perfor-
mance Analysis of Systems and Software (ISPASS), 2014.

[126] A. Yasin, Y. Ben-Asher, and A. Mendelson, “Deep-dive Analysis of the Data Analytics Work-
load in CloudSuite,” inWorkload characterization (IIWSC), 2014.

97

[127] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64 microarchitectural simulator,” in
Performance Analysis of Systems and Software (ISPASS), 2007.

[128] X. Zhan, R. Azimi, S. Kanev, D. Brooks, and S. Reda, “Carb: A c-state power management
arbiter for latency-critical workloads,” 2016.

[129] X. Zhang et al., “Hardware Execution Throttling for Multi-core Resource Management,” in
USENIX Annual Technical Conference (USENIX ATC), 2009.

[130] ——, “An evaluation of per-chip nonuniform frequency scaling on multicores,” inUSENIX
Annual Technical Conference (USENIX ATC), 2010.

[131] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes, “CPI2: CPU perfor-
mance isolation for shared compute clusters,” in European Conference on Computer Systems
(EuroSys), 2013.

98

	Introduction
	Tradeoffs between power management and tail latency
	Energy proportionality in datacenters
	Idle management and latency
	Examining sleep patterns
	Frequency scaling
	Conclusion

	Profiling a warehouse-scale computer
	Why profile a live datacenter?
	Background and methodology
	Workload diversity
	Datacenter tax
	Microarchitecture analysis
	Instruction cache bottlenecks
	Core back-end behavior: dependent accesses
	Simultaneous multi-threading
	Related work
	Conclusions

	XIOSim:a rich extensible user-level x86 simulator
	Why another simulator?
	Execution model
	Validation
	Case study: HELIX-RC

	Accelerating memory allocation
	The need for broad acceleration
	Dynamic memory allocation trends
	Understanding TCMalloc
	Mallacc: a malloc accelerator
	Methodology
	Results
	Conclusion

	Conclusion
	References

