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We wrote “Profiling a WSC” for ISCA 2015 in order to
summarize and share our experiences extracting performance
information from Google’s datacenter fleet. The paper outlined
performance bottlenecks and trends that we observed, both in
software and hardware, and sketched out a handful of areas
for future research. It was intentionally light on solutions and
meant to inspire directions for others’ work. Almost ten years
later, we reflect on the predictions the paper made, check back
on which ones panned out, and which of the trends have caught
on in industry or academia.

IMPACT AND CONTRIBUTIONS

Datacenter tax. Arguably the biggest contribution of the
paper was coining the term “datacenter tax” – referring to
the non-application logic required to run distributed services1.
Since the paper was published, many others have validated it
as an industry-wide phenomenon and used the term to justify
reducing these overheads. As just one example, multiple key
services in Meta datacenters were shown to spend 50+% of
their compute cycles in “tax” code [20].

Hardware “tax” optimizations. We initially proposed clas-
sifying functions as “datacenter tax” mostly based on how easy
they would be to accelerate in hardware (this is ISCA after
all!) – this is why we opted for broadly applicable, low-level
code, that is relatively mature and self-contained. Multiple
follow-up efforts have taken up designing accelerators for
different tax routines. These have included both commercial
designs – e.g. Intel’s Infrastructure Processing Unit (which
accelerates compression and encryption) [8]; as well as open-
source academic ones – accelerators for protocol buffers [10],
compression [11], memory allocation [9].

One takeaway from these efforts is that broad acceleration
of “tax”-like routines is qualitatively different from more tradi-
tional deep acceleration. Accelerating an ensemble of different
bottlenecks, worth 5% each, is very different from speeding
up the whole application “deeply”. Not only does it take more
effort, but the potential gains are smaller by definition. It
also requires very careful thinking about accelerator placement
and communication requirements, and enforces much tighter
budgets (in area/power) due to the limited opportunity.

Software “tax” optimizations. While our main motiva-
tion for classifying cycles as “datacenter tax” initially was
hardware accelerators, we have since realized that optimizing

1We also considered “distributed systems tax”, but decided against it
because components like memcpy are prominent in non-distributed code, too.
Also, “datacenter tax” was plain more catchy.

tax functions in software can be incredibly fruitful. Due
to these low-level functions’ ubiquity, a small number of
optimization experts can focus their attention on “tax” code
and release optimizations to thousands of services at a time.
If the same engineers were to go binary-by-binary and focus
on application logic, they would have to spend a lot of effort
on each application’s idiosyncrasies, and the sophistication of
optimizations could suffer. Focusing on a very small set of
shared routines instead allows for very outsized impact2.

Optimizing datacenter tax in software has been a very
concerted effort inside Google’s WSCs. As just one example
data point, since the paper was written, a gaggle of different
optimizations over 3 years has resulted in a nearly 2x reduction
in memory allocation cycles. After the relatively low-hanging
optimization fruit, the scope of that work has evolved from
“reduce time spent in datacenter tax” to “optimize tax routines
holistically for application productivity” [6]. These sometimes
make tradeoffs that increase tax cycles, but are a net positive
because of positive externalities (like reduced TLB pressure).

Workload diversification. Another trend we identified was
the increasing workload diversity in warehouse-scale com-
puters. That has continued over the years, with compute
cycles spread over more and more services. It has specifically
accelerated with the broader usage of public clouds.

Recent trends on machine learning workloads, however, add
a bit more nuance to our point about diversification. Since
the paper was written in 2014, of course, machine learning
has taken off, with an insatiable appetite for compute cycles.
Training and serving large models does concentrate cycles on a
small number of workloads. However, the models themselves
still change so rapidly that, over yearlong periods, we still
observe significant workload diversity.

General-purpose CPU trends. The paper also analyzed the
performance bottlenecks for general-purpose CPUs in a lot of
detail. Two of these deserve special mention.

CPU frontends. While not the first work to bring sig-
nificant attention to the CPU frontend as an increasingly
important bottleneck for scale out workloads [4], “Profiling
a WSC” confirmed that trend and was often used to motivate
frontend improvements. Some follow-up work has included
deeper characterization [3], new frontend structures [13], [17],
compiler solutions [15], [16], and the adoption of software
prefetching for code as standard in the industry [7].

2Note that this is made possible by Google’s single-repository, code-lives-
at-head approach to software development [19].
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Memory bandwidth vs latency. The paper predicted that
memory bandwidth was going to be less important than
latency, and that’s a trend we got wrong. Since 2014, several
factors have contributed to bandwidth becoming a major
bottleneck in WSCs. On the one hand, there is more demand
for memory bandwidth – due largely to the rise in machine
learning, ever growing core counts, and the mainstream adop-
tion of chiplet architectures (which cause more duplication
than a monolithic cache). On the other, bandwidth supply is
still limited, so bandwidth is becoming ever so scarce.

Does it even matter? When the authors were discussing the
contents of this document, an interesting debate formed. One
camp argued the original paper was too heavy on microarchi-
tectural details, and that is less and less important in today’s
environment dominated by system-wide concerns (disk, net-
work, memory bandwidth) and accelerators (GPUs, TPUs).
The other camp argued that general-purpose architecture is
less glorious, but still continues to make large strides over
time. Since the IvyBridges we profiled in 2014, the amount of
compute per socket has improved by a factor of 10, through
a series of 1% incremental roofshots. Eventually, while we all
agreed that the paper could have benefited from a stronger
systems focus, we didn’t reach a resolution on the role of
future microarchitectural innovation – solving philosophical
debates is an exercise left to the reader.

Methodology contributions. Benchmarks. The paper joined
a small choir arguing that using SPEC CPU is not representa-
tive of WSC workloads. For a long time we even considered
the title “The datacenter doesn’t run SPEC!”, but eventually
(boring) conventional wisdom prevailed. Since then, there has
been some exciting work that represents datacenter workloads
better – DeathStarBench [5], TailBench [12], Fleetbench [1]
and Google memory traces [2]. Unfortunately, it is still
extremely common practice to overestimate the predictive
power of SPEC CPU and use it outside its intended purpose.
Benchmarking is an area where we can learn from the machine
learning community: suites like MLPerf [18] are much more
representative of production workloads.

Finally, fleetwide profiling is considered standard in hyper-
scalars today – there is little doubt about the benefits of finding
optimization opportunities with live traffic. On the lower level,
TopDown microarchitecture analysis [21] was novel in 2014,
and required lots of introduction in the paper text. It is much
more standard, and supported by performance tooling now.

LESSONS AND OBSERVATIONS

In no particular order:
• Workload intuition and deep understanding of workloads

is important. Please continue writing and accepting char-
acterization papers!

• As a corollary, running a benchmark suite and getting a
score out is easy, but often not the full picture. Especially
beware small and non-representative benchmarks [14].

• There is a lot of room to optimize the low-level “tax”
overheads. That said, it is important to remember the big
picture – a single top-level algorithmic improvement can
easily trump years’ worth of low-level work.
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